Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

(-3(1)/(3))^(2)=

Evaluate.\newline(313)2= \left(-3 \frac{1}{3}\right)^{2}=

Full solution

Q. Evaluate.\newline(313)2= \left(-3 \frac{1}{3}\right)^{2}=
  1. Identify Base and Exponent: Identify the base and the exponent.\newlineIn the expression (3(1)/(3))2(-3(1)/(3))^2, 3(1)/(3)-3(1)/(3) is the base raised to the exponent 22.\newlineBase: 3(1)/(3)-3(1)/(3)\newlineExponent: 22
  2. Simplify the Base: Simplify the base.\newlineThe base 3(13)-3\left(\frac{1}{3}\right) can be simplified by multiplying 3-3 by (13)\left(\frac{1}{3}\right).\newline3(13)=3×(13)=1-3\left(\frac{1}{3}\right) = -3 \times \left(\frac{1}{3}\right) = -1
  3. Choose Expanded Form: Choose the expanded form of (1)2(-1)^2. The base is 1-1 and the exponent is 22. So, (1)2(-1)^2 means 1-1 is multiplied by itself 22 times. Expanded Form of (1)2(-1)^2: (1)×(1)(-1) \times (-1)
  4. Multiply to Simplify: (1)2=(1)×(1)(-1)^2 = (-1) \times (-1)\newlineMultiply to write in simplest form.\newline(1)2(-1)^2\newline=(1)×(1)= (-1) \times (-1)\newline=1= 1\newlineThe simplest form of (1)2(-1)^2 is 11.

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago