Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

(2^(-(4)/(3)))/(54^(-(4)/(3)))=

Evaluate.\newline2435443= \frac{2^{-\frac{4}{3}}}{54^{-\frac{4}{3}}}=

Full solution

Q. Evaluate.\newline2435443= \frac{2^{-\frac{4}{3}}}{54^{-\frac{4}{3}}}=
  1. Identify Base and Exponent: Identify the base and the exponent for both the numerator and the denominator.\newlineIn the numerator, 22 is the base raised to the exponent 43-\frac{4}{3}. In the denominator, 5454 is the base raised to the exponent 43-\frac{4}{3}.\newline Numerator Base: 22 \newline Numerator Exponent: 43-\frac{4}{3}\newline Denominator Base: 5454 \newline Denominator Exponent: 43-\frac{4}{3}
  2. Negative Exponents Reciprocal: Recognize that negative exponents indicate the reciprocal of the base raised to the positive exponent.\newlineFor the numerator, 2432^{-\frac{4}{3}} is the reciprocal of 2432^{\frac{4}{3}}.\newlineFor the denominator, 544354^{-\frac{4}{3}} is the reciprocal of 544354^{\frac{4}{3}}.
  3. Rewrite Using Property: Rewrite the expression using the property of negative exponents.\newline(2(43))/(54(43))=(5443)/(243)(2^{-(\frac{4}{3})})/(54^{-(\frac{4}{3})}) = (54^{\frac{4}{3}})/(2^{\frac{4}{3}})
  4. Recognize Multiple of 22: Recognize that 5454 is a multiple of 22, specifically 54=2×2754 = 2 \times 27. This allows us to rewrite 5454 as (2×27)(2 \times 27) to simplify the expression further.
  5. Rewrite with Power of Product: Rewrite 544354^{\frac{4}{3}} as (2×27)43(2 \times 27)^{\frac{4}{3}}.\newline(5443)/(243)=((2×27)43)/(243)(54^{\frac{4}{3}})/(2^{\frac{4}{3}}) = ((2 \times 27)^{\frac{4}{3}})/(2^{\frac{4}{3}})
  6. Apply Power of a Product: Apply the power of a product property, which states that (ab)n=an×bn(ab)^n = a^n \times b^n.(2×27)43243=243×2743243\frac{(2 \times 27)^{\frac{4}{3}}}{2^{\frac{4}{3}}} = \frac{2^{\frac{4}{3}} \times 27^{\frac{4}{3}}}{2^{\frac{4}{3}}}
  7. Cancel Common Term: Cancel out the common term 2432^{\frac{4}{3}} in the numerator and the denominator.\newline243×2743243=2743\frac{2^{\frac{4}{3}} \times 27^{\frac{4}{3}}}{2^{\frac{4}{3}}} = 27^{\frac{4}{3}}
  8. Evaluate 274327^{\frac{4}{3}}: Evaluate 274327^{\frac{4}{3}}. 2727 is 333^3, so we can rewrite 274327^{\frac{4}{3}} as (33)43(3^3)^{\frac{4}{3}}.
  9. Apply Power of a Power: Apply the power of a power property, which states that (an)m=anm(a^n)^m = a^{n*m}.(33)4/3=33(4/3)=34(3^3)^{4/3} = 3^{3*(4/3)} = 3^4
  10. Calculate 343^4: Calculate 343^4.\newline34=3×3×3×3=813^4 = 3 \times 3 \times 3 \times 3 = 81

More problems from Negative Exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago