Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

(-2(2)/(3))^(2)=

Evaluate.\newline(223)2= \left(-2 \frac{2}{3}\right)^{2}=

Full solution

Q. Evaluate.\newline(223)2= \left(-2 \frac{2}{3}\right)^{2}=
  1. Identify base and exponent: Identify the base and the exponent.\newlineIn the expression (2(2)/(3))2(-2(2)/(3))^{2}, 2(2)/(3)-2(2)/(3) is the base raised to the exponent 22.\newlineBase: 2(2)/(3)-2(2)/(3)\newlineExponent: 22
  2. Choose expanded form: Choose the expanded form of (2(2)/(3))2(-2(2)/(3))^{2}.\newlineThe base is 2(2)/(3)-2(2)/(3) and the exponent is 22.\newlineSo, (2(2)/(3))2(-2(2)/(3))^{2} means 2(2)/(3)-2(2)/(3) is multiplied by itself once.\newlineExpanded Form of (2(2)/(3))2(-2(2)/(3))^{2}: \newline(2(2)/(3))×(2(2)/(3))(-2(2)/(3)) \times (-2(2)/(3))
  3. Multiply to simplify: (2(2)/(3))2=(2(2)/(3))×(2(2)/(3))(-2(2)/(3))^{2} = (-2(2)/(3)) \times (-2(2)/(3))\newlineMultiply to write in simplest form.\newlineFirst, simplify the base: 2(2)/(3)=4/3-2(2)/(3) = -4/3\newlineNow, (4/3)2=(4/3)×(4/3)(-4/3)^{2} = (-4/3) \times (-4/3)
  4. Final answer: (43)×(43)=169(-\frac{4}{3}) \times (-\frac{4}{3}) = \frac{16}{9}\newlineWhen multiplying two negative numbers, the result is positive.\newlineSo, the simplest form of (2(23))2(-2(\frac{2}{3}))^{2} is 169\frac{16}{9}.

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago