Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

(-2(1)/(2))^(2)=

Evaluate.\newline(212)2= \left(-2 \frac{1}{2}\right)^{2}=

Full solution

Q. Evaluate.\newline(212)2= \left(-2 \frac{1}{2}\right)^{2}=
  1. Identify Base and Exponent: Identify the base and the exponent.\newlineIn the expression (2(1)/(2))2(-2(1)/(2))^{2}, 2(1)/(2)-2(1)/(2) is the base raised to the exponent 22.\newlineBase: 2(1)/(2)-2(1)/(2) \newlineExponent: 22
  2. Choose Expanded Form: Choose the expanded form of (2(12))2(-2\left(\frac{1}{2}\right))^2. The base is 2(12)-2\left(\frac{1}{2}\right) and the exponent is 22. So, (2(12))2(-2\left(\frac{1}{2}\right))^2 means 2(12)-2\left(\frac{1}{2}\right) is multiplied by itself 22 times. Expanded Form of (2(12))2(-2\left(\frac{1}{2}\right))^2: (2(12))×(2(12))(-2\left(\frac{1}{2}\right)) \times (-2\left(\frac{1}{2}\right))
  3. Multiply to Simplify: (2(1)/(2))2=(2(1)/(2))×(2(1)/(2))(-2(1)/(2))^{2} = (-2(1)/(2)) \times (-2(1)/(2))\newlineMultiply to write in simplest form.\newline(2(1)/(2))2(-2(1)/(2))^{2}\newline=(2(1)/(2))×(2(1)/(2))= (-2(1)/(2)) \times (-2(1)/(2))\newline=(2.5)×(2.5)= (-2.5) \times (-2.5)
  4. Calculate the Product: Calculate the product.\newline(2.5)×(2.5)=6.25(-2.5) \times (-2.5) = 6.25\newlineWhen multiplying two negative numbers, the result is positive.

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago