Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

(125^(-(11)/(12)))/(125^(-(1)/(4)))=

Evaluate.\newline125111212514= \frac{125^{-\frac{11}{12}}}{125^{-\frac{1}{4}}}=

Full solution

Q. Evaluate.\newline125111212514= \frac{125^{-\frac{11}{12}}}{125^{-\frac{1}{4}}}=
  1. Simplify expression using exponents: Simplify the expression using the properties of exponents.\newlineWe have the expression (125(11)/(12))/(125(1)/(4))(125^{-(11)/(12)})/(125^{-(1)/(4)}). To simplify, we can use the property of exponents that states am/an=amna^{m}/a^{n} = a^{m-n} where aa is the base and m,nm, n are exponents.
  2. Combine exponents using property: Apply the property of exponents to combine the exponents.\newlineWe subtract the exponent in the denominator from the exponent in the numerator: (1112)(14)=(1112)+(14)-\left(\frac{11}{12}\right) - \left(-\frac{1}{4}\right) = -\left(\frac{11}{12}\right) + \left(\frac{1}{4}\right).
  3. Find common denominator for fractions: Find a common denominator to add the fractions.\newlineThe common denominator for 1212 and 44 is 1212. So we convert 14\frac{1}{4} to 312\frac{3}{12} and then add it to 1112-\frac{11}{12}.\newline(1112)+(312)=1112+312=812.-(\frac{11}{12}) + (\frac{3}{12}) = -\frac{11}{12} + \frac{3}{12} = -\frac{8}{12}.
  4. Simplify fraction 812-\frac{8}{12}: Simplify the fraction 812-\frac{8}{12}. We can simplify 812-\frac{8}{12} by dividing both the numerator and the denominator by their greatest common divisor, which is 44. 812÷44=23-\frac{8}{12} \div \frac{4}{4} = -\frac{2}{3}.
  5. Write expression with new exponent: Write the simplified expression with the new exponent.\newlineNow we have 125(2/3)125^{(-2/3)}.
  6. Evaluate 125(2/3)125^{(-2/3)}: Evaluate 125(2/3)125^{(-2/3)}.\newlineSince 125125 is 535^3, we can rewrite 125(2/3)125^{(-2/3)} as (53)(2/3)(5^3)^{(-2/3)}.\newlineUsing the property of exponents (a(m))n=a(mn)(a^{(m)})^n = a^{(m*n)}, we get 5(3(2/3))=525^{(3*(-2/3))} = 5^{-2}.
  7. Evaluate 525^{-2}: Evaluate 525^{-2}. The negative exponent means we take the reciprocal of the base raised to the positive exponent. So, 52=1525^{-2} = \frac{1}{5^2}.
  8. Calculate 525^2: Calculate 525^2. 525^2 is 55 multiplied by itself, which equals 2525.
  9. Write final answer: Write the final answer.\newlineTherefore, 152\frac{1}{5^2} is 125\frac{1}{25}.

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago