Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

(-1(2)/(3))^(2)=

Evaluate.\newline(123)2= \left(-1 \frac{2}{3}\right)^{2}=

Full solution

Q. Evaluate.\newline(123)2= \left(-1 \frac{2}{3}\right)^{2}=
  1. Identify base and exponent: Identify the base and the exponent.\newlineIn the expression (1(2)/(3))2(-1(2)/(3))^2, 1(2)/(3)-1(2)/(3) is the base raised to the exponent 22.\newlineBase: 1(2)/(3)-1(2)/(3) \newlineExponent: 22
  2. Choose expanded form: Choose the expanded form of (1(23))2(-1\left(\frac{2}{3}\right))^2. The base is 1(23)-1\left(\frac{2}{3}\right) and the exponent is 22. So, (1(23))2(-1\left(\frac{2}{3}\right))^2 means 1(23)-1\left(\frac{2}{3}\right) is multiplied by itself 22 times. Expanded Form of (1(23))2(-1\left(\frac{2}{3}\right))^2: (1(23))×(1(23))(-1\left(\frac{2}{3}\right)) \times (-1\left(\frac{2}{3}\right))
  3. Calculate product: (1(2)/(3))2=(1(2)/(3))×(1(2)/(3))(-1(2)/(3))^2 = (-1(2)/(3)) \times (-1(2)/(3))\newlineMultiply to write in simplest form.\newlineFirst, we need to understand that 1(2)/(3)-1(2)/(3) is the same as 1+(2)/(3)-1 + (2)/(3) or (1+(2)/(3))-(1 + (2)/(3)).\newlineSo, (1(2)/(3))2(-1(2)/(3))^2\newline= (1+(2)/(3))×(1+(2)/(3))(-1 + (2)/(3)) \times (-1 + (2)/(3))\newline= (1+(2)/(3))×(1+(2)/(3))(-1 + (2)/(3)) \times (-1 + (2)/(3))
  4. Simplify expression: Calculate the product.\newline(1+23)×(1+23)(-1 + \frac{2}{3}) \times (-1 + \frac{2}{3})\newline=12323+(23)(23)= 1 - \frac{2}{3} - \frac{2}{3} + (\frac{2}{3})(\frac{2}{3})\newline=143+49= 1 - \frac{4}{3} + \frac{4}{9}
  5. Simplify expression: Calculate the product.\newline(1+23)×(1+23)(-1 + \frac{2}{3}) \times (-1 + \frac{2}{3})\newline=12323+(23)(23)= 1 - \frac{2}{3} - \frac{2}{3} + (\frac{2}{3})(\frac{2}{3})\newline=143+49= 1 - \frac{4}{3} + \frac{4}{9} Simplify the expression.\newline143+491 - \frac{4}{3} + \frac{4}{9}\newlineTo combine these terms, we need a common denominator, which is 99.\newline=99129+49= \frac{9}{9} - \frac{12}{9} + \frac{4}{9}\newline=912+49= \frac{9 - 12 + 4}{9}\newline=19= \frac{1}{9}

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago