Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Differentiate the following functions:
(a) 
f(x)=ex^(2)+2e^(x)+xe^(2)+x^(e^(2))+xe^(x)

11. Differentiate the following functions:\newline(a) f(x)=ex2+2ex+xe2+xe2+xex f(x)=e x^{2}+2 e^{x}+x e^{2}+x^{e^{2}}+x e^{x}

Full solution

Q. 11. Differentiate the following functions:\newline(a) f(x)=ex2+2ex+xe2+xe2+xex f(x)=e x^{2}+2 e^{x}+x e^{2}+x^{e^{2}}+x e^{x}
  1. Apply Sum Rule: To differentiate the function f(x)=ex2+2ex+xe2+xe2+xexf(x) = e^{x^2} + 2e^x + xe^2 + x^{e^2} + xe^x, we will apply the sum rule of differentiation, which allows us to differentiate each term separately.
  2. Differentiate ex2e^{x^2}: Differentiate the first term ex2e^{x^2} with respect to xx using the chain rule. The derivative of eue^u with respect to xx is eududxe^u \cdot \frac{du}{dx}, where u=x2u = x^2 in this case.\newlineddx(ex2)=ex2ddx(x2)=ex22x\frac{d}{dx}(e^{x^2}) = e^{x^2} \cdot \frac{d}{dx}(x^2) = e^{x^2} \cdot 2x
  3. Differentiate 2ex2e^x: Differentiate the second term 2ex2e^x with respect to xx. The derivative of a constant times a function is the constant times the derivative of the function.\newline(ddx)(2ex)=2×(ddx)(ex)=2×ex(\frac{d}{dx})(2e^x) = 2 \times (\frac{d}{dx})(e^x) = 2 \times e^x
  4. Differentiate xe2xe^2: Differentiate the third term xe2xe^2 with respect to xx. Since e2e^2 is a constant, the derivative of a constant times xx is just the constant.\newline(ddx)(xe2)=e2(\frac{d}{dx})(xe^2) = e^2
  5. Differentiate xe2x^{e^2}: Differentiate the fourth term xe2x^{e^2} with respect to xx. The derivative of xx to a constant power is the constant power times xx raised to the power minus one.\newline(ddx)(xe2)=e2xe21(\frac{d}{dx})(x^{e^2}) = e^2 \cdot x^{e^2 - 1}
  6. Differentiate xexxe^x: Differentiate the fifth term xexxe^x with respect to xx using the product rule. The product rule states that (ddx)(uv)=u(v)+u(v)(\frac{d}{dx})(uv) = u'(v) + u(v'), where u=xu = x and v=exv = e^x.\newline(ddx)(xex)=(ddx)(x)ex+x(ddx)(ex)=1ex+xex=ex+xex(\frac{d}{dx})(xe^x) = (\frac{d}{dx})(x) \cdot e^x + x \cdot (\frac{d}{dx})(e^x) = 1 \cdot e^x + x \cdot e^x = e^x + xe^x
  7. Combine Derivatives: Combine the derivatives of all terms to get the derivative of the entire function f(x)f(x).f(x)=(ddx)(ex2)+(ddx)(2ex)+(ddx)(xe2)+(ddx)(xe2)+(ddx)(xex)f'(x) = \left(\frac{d}{dx}\right)(e^{x^2}) + \left(\frac{d}{dx}\right)(2e^x) + \left(\frac{d}{dx}\right)(xe^2) + \left(\frac{d}{dx}\right)(x^{e^2}) + \left(\frac{d}{dx}\right)(xe^x)f(x)=ex22x+2ex+e2+e2xe21+ex+xexf'(x) = e^{x^2} \cdot 2x + 2 \cdot e^x + e^2 + e^2 \cdot x^{e^2 - 1} + e^x + xe^x
  8. Simplify Expression: Simplify the expression for the derivative. f(x)=2xex2+2ex+e2+e2xe21+ex+xexf'(x) = 2xe^{x^2} + 2e^x + e^2 + e^2 \cdot x^{e^2 - 1} + e^x + xe^x

More problems from Find derivatives of using multiple formulae