Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine the number of real solutions for the quadratic equation 2x23x+1=02x^2 - 3x + 1 = 0 using the discriminant.

Full solution

Q. Determine the number of real solutions for the quadratic equation 2x23x+1=02x^2 - 3x + 1 = 0 using the discriminant.
  1. Identify values: Identify the values of aa, bb, and cc.\newlineCompare ax2+bx+c=0ax^2 + bx + c = 0 and 2x23x+1=02x^2 - 3x + 1 = 0.\newlinea=2a = 2\newlineb=3b = -3\newlinec=1c = 1
  2. Compare equations: Substitute a=2a = 2, b=3b = -3, and c=1c = 1 into the discriminant formula D=b24acD = b^2 - 4ac.\newlineD=(3)2421D = (-3)^2 - 4 \cdot 2 \cdot 1
  3. Substitute into formula: Simplify the discriminant.\newlineD=98D = 9 - 8
  4. Simplify discriminant: Calculate the final value of the discriminant.\newlineD=1D = 1
  5. Calculate final value: Determine the number of real solutions based on the discriminant.\newlineSince D > 0, there are 22 real solutions.

More problems from Find derivatives using the chain rule I