Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).

lim_(x rarr oo)(root(3)(30x^(8)-64x^(12)))/(9x^(4)+7)
Answer:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx30x864x1239x4+7 \lim _{x \rightarrow \infty} \frac{\sqrt[3]{30 x^{8}-64 x^{12}}}{9 x^{4}+7} \newlineAnswer:

Full solution

Q. Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx30x864x1239x4+7 \lim _{x \rightarrow \infty} \frac{\sqrt[3]{30 x^{8}-64 x^{12}}}{9 x^{4}+7} \newlineAnswer:
  1. Identify highest power: Identify the highest power of xx in the numerator and denominator.\newlineIn the numerator, the highest power of xx inside the cube root is x12x^{12}, and in the denominator, the highest power of xx is x4x^{4}. To simplify the limit, we will factor out the highest power of xx from both the numerator and the denominator.
  2. Factor out x12x^{12}: Factor out x12x^{12} from the cube root in the numerator and x4x^4 from the denominator.\newlineThe expression becomes:\newlinelimx(x12(30/x464)3x4(9+7/x4))\lim_{x \rightarrow \infty}\left(\frac{\sqrt[3]{x^{12}(30/x^4 - 64)}}{x^4(9+7/x^4)}\right)
  3. Simplify cube root: Simplify the cube root of x12x^{12} and cancel out x4x^4.\newlineSince the cube root of x12x^{12} is x4x^4, we can cancel out x4x^4 from the numerator and denominator:\newlinelimx(x430/x4643)/(x4(9+7/x4))\lim_{x \to \infty}\left(\frac{x^4}{\sqrt[3]{30/x^4 - 64}}\right)\Bigg/\left(x^4(9+7/x^4)\right)\newlinelimx(130/x4643)/(9+7/x4)\lim_{x \to \infty}\left(\frac{1}{\sqrt[3]{30/x^4 - 64}}\right)\Bigg/(9+7/x^4)
  4. Evaluate limit: Evaluate the limit as xx approaches infinity.\newlineAs xx approaches infinity, the terms 30x4\frac{30}{x^4} and 7x4\frac{7}{x^4} approach 00. Therefore, the expression simplifies to:\newlinelimx(1643)/9\lim_{x \to \infty}\left(\frac{1}{\sqrt[3]{-64}}\right)/9\newlinelimx(14)/9\lim_{x \to \infty}\left(\frac{1}{-4}\right)/9
  5. Simplify final expression: Simplify the final expression.\newlineThe final expression simplifies to:\newline1(4)/9\frac{1}{(-4)}/9\newline136-\frac{1}{36}

More problems from Find derivatives of logarithmic functions