Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).

lim_(x rarr oo)(root(3)(-27x^(7)-x^(12)))/(8x^(2)+x+8x^(4))

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx27x7x1238x2+x+8x4 \lim _{x \rightarrow \infty} \frac{\sqrt[3]{-27 x^{7}-x^{12}}}{8 x^{2}+x+8 x^{4}}

Full solution

Q. Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx27x7x1238x2+x+8x4 \lim _{x \rightarrow \infty} \frac{\sqrt[3]{-27 x^{7}-x^{12}}}{8 x^{2}+x+8 x^{4}}
  1. Factor Out Highest Powers: We are given the limit: \newlinelimx(27x7x1238x2+x+8x4)\lim_{x \to \infty}\left(\frac{\sqrt[3]{-27x^{7}-x^{12}}}{8x^{2}+x+8x^{4}}\right)\newlineTo simplify this limit, we will first factor out the highest power of xx in the numerator and denominator.
  2. Simplify Inside Cube Root: In the numerator, the highest power of xx is x12x^{12}, and in the denominator, it is x4x^4. We will factor these out from the root and the polynomial respectively.\newlineNumerator: x12(27x51)3\sqrt[3]{x^{12} * (-\frac{27}{x^5} - 1)}\newlineDenominator: x4(8x2+1x3+8)x^4 * (\frac{8}{x^2} + \frac{1}{x^3} + 8)
  3. Approach Infinity: Now we simplify the expression inside the cube root in the numerator and the terms in the denominator.\newlineNumerator: x427x513x^4 \cdot \sqrt[3]{-\frac{27}{x^5} - 1}\newlineDenominator: x4(8x2+1x3+8)x^4 \cdot \left(\frac{8}{x^2} + \frac{1}{x^3} + 8\right)\newlineAs xx approaches infinity, the terms with negative powers of xx will approach zero.
  4. Simplify Numerator and Denominator: After the terms with negative powers of xx approach zero, we have:\newlineNumerator: x413x^4 \cdot \sqrt[3]{-1}\newlineDenominator: x48x^4 \cdot 8
  5. Cancel Out x4x^4 Terms: The cube root of 1-1 is 1-1, so the numerator simplifies to:\newlineNumerator: x4(1)x^4 \cdot (-1)\newlineDenominator: x48x^4 \cdot 8
  6. Final Simplified Form: Now we can cancel out the x4x^4 terms in the numerator and denominator:\newlineNumerator: 1-1\newlineDenominator: 88
  7. Final Simplified Form: Now we can cancel out the x4x^4 terms in the numerator and denominator:\newlineNumerator: 1-1\newlineDenominator: 88The final simplified form of the limit is:\newlinelimx(18)\lim_{x \to \infty}(-\frac{1}{8})\newlineSince this is a constant, the limit as xx approaches infinity is simply the constant value.

More problems from Multiplication with rational exponents