Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine the equation of the parabola with vertex 
(-8,5) and directrix 
y=-3.

Determine the equation of the parabola with vertex (8,5) (-8,5) and directrix y=3 y=-3 .

Full solution

Q. Determine the equation of the parabola with vertex (8,5) (-8,5) and directrix y=3 y=-3 .
  1. Identify Parabola Type: Identify whether the parabola is vertical or horizontal based on the directrix.\newlineDirectrix: y=3y = -3 is a horizontal line.\newlineType of parabola: Vertical
  2. Vertex Form: Identify the vertex form of a vertical parabola.\newlineVertex form of vertical parabola: y=a(xh)2+ky = a(x-h)^2+k
  3. Determine Direction: Determine if the parabola opens upward or downward.\newlineVertex (8,5)(-8,5) is above the directrix y=3y = -3.\newlineThe parabola opens upward.
  4. Calculate Distance: Calculate the distance between the vertex and the directrix.\newliney-value for the vertex: 55\newliney-value for the directrix: 3-3\newlineDistance: 5(3)=5+3=8|5 - (-3)| = 5 + 3 = 8
  5. Find Value of a: Determine the value of a.\newlineThe distance between the vertex and directrix is 88, which is equal to 14a\frac{1}{4a}.\newline8=14a8 = \frac{1}{4a}\newlineSolve for a: a=14×8a = \frac{1}{4\times 8}\newlinea=132a = \frac{1}{32}
  6. Write Parabola Equation: Write the equation of the parabola using the vertex form.\newlineSubstitute 132\frac{1}{32} for aa, 8-8 for hh, and 55 for kk.\newliney=132(x(8))2+5y = \frac{1}{32} (x - (-8))^2 + 5\newliney=132(x+8)2+5y = \frac{1}{32} (x + 8)^2 + 5

More problems from Write equations of parabolas in vertex form using properties