Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

cos(13π12)=\cos\left(\frac{13\pi}{12}\right)=

Full solution

Q. cos(13π12)=\cos\left(\frac{13\pi}{12}\right)=
  1. Express as Sum: To find the value of cos(13π12)\cos\left(\frac{13 \pi}{12}\right), we can express 13π12\frac{13 \pi}{12} as a sum or difference of angles whose cosine values we know from the unit circle. The angles we commonly use are multiples of π6\frac{\pi}{6}, π4\frac{\pi}{4}, and π3\frac{\pi}{3} because their trigonometric values are well known.
  2. Cosine of Sum: We can write (13π)/(12)(13 \pi)/(12) as the sum of (9π)/(12)(9 \pi)/(12) and (4π)/(12)(4 \pi)/(12), which simplifies to (3π)/4+π/3(3 \pi)/4 + \pi/3. We know the cosine values for both (3π)/4(3 \pi)/4 and π/3\pi/3.
  3. Substitute Values: Using the cosine of sum formula, cos(A+B)=cos(A)cos(B)sin(A)sin(B)\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B), we can find the value of cos(13π12)\cos\left(\frac{13 \pi}{12}\right) by substituting A=3π4A = \frac{3 \pi}{4} and B=π3B = \frac{\pi}{3}.
  4. Perform Multiplication: The cosine of (3π)/4(3 \pi)/4 is 2/2-\sqrt{2}/2 and the cosine of π/3\pi/3 is 1/21/2. The sine of (3π)/4(3 \pi)/4 is 2/2\sqrt{2}/2 and the sine of π/3\pi/3 is 3/2\sqrt{3}/2.
  5. Simplify Expression: Substitute these values into the cosine of sum formula: cos(13π12)=cos(3π4+π3)=cos(3π4)cos(π3)sin(3π4)sin(π3)\cos\left(\frac{13\pi}{12}\right) = \cos\left(\frac{3\pi}{4} + \frac{\pi}{3}\right) = \cos\left(\frac{3\pi}{4}\right)\cos\left(\frac{\pi}{3}\right) - \sin\left(\frac{3\pi}{4}\right)\sin\left(\frac{\pi}{3}\right).
  6. Combine Terms: Perform the multiplication: $\cos\left(\frac{\(13\)\pi}{\(12\)}\right) = \left(-\frac{\sqrt{\(2\)}}{\(2\)}\right)\left(\frac{\(1\)}{\(2\)}\right) - \left(\frac{\sqrt{\(2\)}}{\(2\)}\right)\left(\frac{\sqrt{\(3\)}}{\(2\)}\right).
  7. Combine Terms: Perform the multiplication: \(\cos\left(\frac{13 \pi}{12}\right) = \left(-\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right) - \left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)\). Simplify the expression: \(\cos\left(\frac{13 \pi}{12}\right) = -\frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4}\).
  8. Combine Terms: Perform the multiplication: \(\cos\left(\frac{13 \pi}{12}\right) = \left(-\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right) - \left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)\). Simplify the expression: \(\cos\left(\frac{13 \pi}{12}\right) = -\frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4}\). Combine the terms: \(\cos\left(\frac{13 \pi}{12}\right) = \frac{-\sqrt{2} - \sqrt{6}}{4}\).

More problems from Simplify variable expressions using properties