Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider this matrix:

[[-7,0],[-6,3]]
Find the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.

Consider this matrix:\newline[7amp;06amp;3] \left[\begin{array}{cc} -7 & 0 \\ -6 & 3 \end{array}\right] \newlineFind the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.

Full solution

Q. Consider this matrix:\newline[7063] \left[\begin{array}{cc} -7 & 0 \\ -6 & 3 \end{array}\right] \newlineFind the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.
  1. Identify Matrix Elements: To find the inverse of a 2×22 \times 2 matrix given by [aamp;b camp;d]\left[\begin{array}{cc} a & b \ c & d \end{array}\right], we use the formula for the inverse of a matrix: [damp;b camp;a]/(adbc)\left[\begin{array}{cc} d & -b \ -c & a \end{array}\right] / (ad - bc) First, we identify aa, bb, cc, and dd from our matrix [7amp;0 6amp;3]\left[\begin{array}{cc} -7 & 0 \ -6 & 3 \end{array}\right]. Here, a=7a = -7, b=0b = 0, [aamp;b camp;d]\left[\begin{array}{cc} a & b \ c & d \end{array}\right]00, and [aamp;b camp;d]\left[\begin{array}{cc} a & b \ c & d \end{array}\right]11.
  2. Calculate Determinant: Next, we calculate the determinant of the matrix, which is adbcad - bc.\newlineDeterminant = (7)(3)(0)(6)(-7)(3) - (0)(-6)\newlineDeterminant = 210-21 - 0\newlineDeterminant = 21-21
  3. Check Non-Zero Determinant: Now, we check if the determinant is non-zero, because a matrix has an inverse only if its determinant is non-zero.\newlineSince the determinant is 21-21, which is not equal to zero, the matrix does have an inverse.
  4. Apply Inverse Matrix Formula: We apply the formula for the inverse of a 2×22 \times 2 matrix using the values of aa, bb, cc, and dd we identified earlier.\newlineInverse matrix = [3amp;0 6amp;7]/(21)\left[\begin{array}{cc} 3 & -0 \ 6 & -7 \end{array}\right] / (-21)
  5. Simplify Inverse Matrix: We simplify the inverse matrix by dividing each element by the determinant 21-21.\newlineInverse matrix = [321amp;021 621amp;721]\left[\begin{array}{cc} \frac{3}{-21} & \frac{0}{-21} \ \frac{6}{-21} & \frac{-7}{-21} \end{array}\right]\newlineInverse matrix = [17amp;0 27amp;13]\left[\begin{array}{cc} -\frac{1}{7} & 0 \ -\frac{2}{7} & \frac{1}{3} \end{array}\right]

More problems from Find inverse functions and relations