Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider this matrix:

[[-10,-10],[6,9]]
Find the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.

Consider this matrix:\newline[10amp;106amp;9] \left[\begin{array}{cc} -10 & -10 \\ 6 & 9 \end{array}\right] \newlineFind the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.

Full solution

Q. Consider this matrix:\newline[101069] \left[\begin{array}{cc} -10 & -10 \\ 6 & 9 \end{array}\right] \newlineFind the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.
  1. Formula for Inverse: To find the inverse of a 22x22 matrix, we use the formula:\newlineA1=1det(A)[damp;bcamp;a] A^{-1} = \frac{1}{\text{det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \newlinewhere A=[aamp;bcamp;d] A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} .\newlineFor the given matrix A=[10amp;106amp;9] A = \begin{bmatrix} -10 & -10 \\ 6 & 9 \end{bmatrix} , we have a=10 a = -10 , b=10 b = -10 , c=6 c = 6 , and d=9 d = 9 .\newlineFirst, we need to calculate the determinant of A A , which is det(A)=adbc \text{det}(A) = ad - bc .
  2. Calculate Determinant: Calculate the determinant:\newlinedet(A)=(10)(9)(10)(6) \text{det}(A) = (-10)(9) - (-10)(6) \newlinedet(A)=90(60) \text{det}(A) = -90 - (-60) \newlinedet(A)=90+60 \text{det}(A) = -90 + 60 \newlinedet(A)=30 \text{det}(A) = -30 \newlineThe determinant is 30-30.
  3. Apply Inverse Formula: Now, we apply the formula for the inverse of a 22x22 matrix:\newlineA1=130[9amp;106amp;10] A^{-1} = \frac{1}{-30} \begin{bmatrix} 9 & 10 \\ -6 & -10 \end{bmatrix} \newlineA1=[9/30amp;10/306/30amp;10/30] A^{-1} = \begin{bmatrix} -9/30 & -10/30 \\ 6/30 & 10/30 \end{bmatrix} \newlineSimplify the fractions:\newlineA1=[3/10amp;1/31/5amp;1/3] A^{-1} = \begin{bmatrix} -3/10 & -1/3 \\ 1/5 & 1/3 \end{bmatrix}

More problems from Find inverse functions and relations