Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider this matrix:

[[10,0],[-8,1]]
Find the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.

Consider this matrix:\newline[10amp;08amp;1] \left[\begin{array}{cc} 10 & 0 \\ -8 & 1 \end{array}\right] \newlineFind the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.

Full solution

Q. Consider this matrix:\newline[10081] \left[\begin{array}{cc} 10 & 0 \\ -8 & 1 \end{array}\right] \newlineFind the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.
  1. Calculate Determinant: To find the inverse of a 22x22 matrix, we use the formula:\newlineA1=1det(A)[damp;bcamp;a] A^{-1} = \frac{1}{\text{det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \newlinewhere A=[aamp;bcamp;d] A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} and det(A)=adbc\text{det}(A) = ad - bc.\newlineFor the given matrix A=[10amp;08amp;1] A = \begin{bmatrix} 10 & 0 \\ -8 & 1 \end{bmatrix} , we have a=10 a = 10 , b=0 b = 0 , c=8 c = -8 , and d=1 d = 1 .\newlineFirst, we calculate the determinant of A A :\newlinedet(A)=(10)(1)(0)(8)=100=10\text{det}(A) = (10)(1) - (0)(-8) = 10 - 0 = 10.
  2. Apply Inverse Formula: Now that we have the determinant, we can find the inverse by applying the formula:\newlineA1=110[1amp;08amp;10] A^{-1} = \frac{1}{10} \begin{bmatrix} 1 & -0 \\ 8 & 10 \end{bmatrix} \newlineSimplify the matrix by multiplying each element by 110 \frac{1}{10} :\newlineA1=[110amp;0810amp;1] A^{-1} = \begin{bmatrix} \frac{1}{10} & 0 \\ \frac{8}{10} & 1 \end{bmatrix} \newlineFurther simplification gives us:\newlineA1=[0.1amp;00.8amp;1] A^{-1} = \begin{bmatrix} 0.1 & 0 \\ 0.8 & 1 \end{bmatrix}

More problems from Find inverse functions and relations