Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider the equation

7*e^(0.1 t)=47". "
Solve the equation for 
t. Express the solution as a logarithm in base
e.

t=◻
Approximate the value of 
t. Round your answer to the nearest thousandth.

t~~

Consider the equation\newline7e0.1t=47 7 \cdot e^{0.1 t}=47 \text {. } \newlineSolve the equation for t t . Express the solution as a logarithm in basee e .\newlinet= t=\square \newlineApproximate the value of t t . Round your answer to the nearest thousandth.\newlinet t \approx

Full solution

Q. Consider the equation\newline7e0.1t=47 7 \cdot e^{0.1 t}=47 \text {. } \newlineSolve the equation for t t . Express the solution as a logarithm in basee e .\newlinet= t=\square \newlineApproximate the value of t t . Round your answer to the nearest thousandth.\newlinet t \approx
  1. Identify and isolate exponential term: Identify the equation and isolate the exponential term.\newlineThe equation is 7e0.1t=477e^{0.1t} = 47. To isolate the exponential term, divide both sides of the equation by 77.\newlinee0.1t=477e^{0.1t} = \frac{47}{7}\newlinee0.1t=6.71428571429e^{0.1t} = 6.71428571429
  2. Take natural logarithm of both sides: Take the natural logarithm of both sides to solve for tt.\newlineln(e0.1t)=ln(6.71428571429)\ln(e^{0.1 t}) = \ln(6.71428571429)\newlineSince ln(ex)=x\ln(e^x) = x, we can simplify the left side to 0.1t0.1 t.\newline0.1t=ln(6.71428571429)0.1 t = \ln(6.71428571429)
  3. Divide both sides by 00.11: Divide both sides by 0.10.1 to solve for tt.\newlinet=ln(6.71428571429)0.1t = \frac{\ln(6.71428571429)}{0.1}
  4. Calculate value of t: Calculate the value of t using a calculator.\newlinetln(6.71428571429)/0.1t \approx \ln(6.71428571429) / 0.1\newlinet19.803902575t \approx 19.803902575\newlineRound the answer to the nearest thousandth.\newlinet19.804t \approx 19.804

More problems from Change of base formula