Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Circle 
O shown below has an arc of length 57 inches subtended by an angle of 
106^(@).
Find the length of the radius, 
x, to the nearest tenth of an inch.
Answer: inches

Circle O O shown below has an arc of length 5757 inches subtended by an angle of 106 106^{\circ} .\newlineFind the length of the radius, x x , to the nearest tenth of an inch.\newlineAnswer: \square inches

Full solution

Q. Circle O O shown below has an arc of length 5757 inches subtended by an angle of 106 106^{\circ} .\newlineFind the length of the radius, x x , to the nearest tenth of an inch.\newlineAnswer: \square inches
  1. Convert to Radians: To find the length of the radius, we can use the formula for the length of an arc, which is arc length=radius×central angle (in radians) arc \ length = radius \times central \ angle \ (in \ radians) . Since the central angle is given in degrees, we need to convert it to radians first.
  2. Calculate Angle: To convert degrees to radians, we use the conversion factor π radians180 degrees \frac{\pi \ radians}{180 \ degrees} . So, the angle in radians is 106×π180 106^{\circ} \times \frac{\pi}{180} .
  3. Solve for Radius: Now, let's calculate the angle in radians: 106×π180=106π180 106 \times \frac{\pi}{180} = \frac{106\pi}{180} .
  4. Substitute Values: Next, we can rearrange the arc length formula to solve for the radius: radius=arc lengthcentral angle (in radians) radius = \frac{arc \ length}{central \ angle \ (in \ radians)} .
  5. Perform Division: Substitute the given arc length and the calculated angle in radians into the formula: radius=57106π180 radius = \frac{57}{\frac{106\pi}{180}} .
  6. Calculate Numerical Value: Now, perform the division to find the radius: radius=57×180106π radius = \frac{57 \times 180}{106\pi} .
  7. Calculate Numerical Value: Now, perform the division to find the radius: radius=57×180106π radius = \frac{57 \times 180}{106\pi} .Using a calculator to find the numerical value of the radius: radius57×180106×π10260333.03830.8 radius \approx \frac{57 \times 180}{106 \times \pi} \approx \frac{10260}{333.038} \approx 30.8 inches.

More problems from Circles: word problems