Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Circle 
O shown below has a radius of 13 inches. To the nearest tenth of an inch, determine the length of the arc, 
x, subtended by an angle of 
100^(@).
Answer: inches

Circle O O shown below has a radius of 1313 inches. To the nearest tenth of an inch, determine the length of the arc, x x , subtended by an angle of 100 100^{\circ} .\newlineAnswer: \square inches

Full solution

Q. Circle O O shown below has a radius of 1313 inches. To the nearest tenth of an inch, determine the length of the arc, x x , subtended by an angle of 100 100^{\circ} .\newlineAnswer: \square inches
  1. Identify formula: Identify the formula to calculate the length of an arc.\newlineThe length of an arc LL in a circle is given by the formula L=(θ/360)×2πrL = (\theta/360) \times 2\pi r, where θ\theta is the central angle in degrees and rr is the radius of the circle.
  2. Plug values: Plug in the given values into the formula.\newlineHere, θ=100\theta = 100 degrees and r=13r = 13 inches. We will use π3.14\pi \approx 3.14 for our calculations.\newlineL=(100360)×2×3.14×13L = \left(\frac{100}{360}\right) \times 2 \times 3.14 \times 13
  3. Calculate fraction: Calculate the fraction of the circle that the arc length represents. \newline100100 degrees is 100360\frac{100}{360} of the full circle.\newline100360=518\frac{100}{360} = \frac{5}{18}
  4. Calculate length: Calculate the arc length.\newlineL=518×2×3.14×13L = \frac{5}{18} \times 2 \times 3.14 \times 13\newlineL=518×2×3.14×13L = \frac{5}{18} \times 2 \times 3.14 \times 13\newlineL=59×3.14×13L = \frac{5}{9} \times 3.14 \times 13\newlineL=5×3.14×13/9L = 5 \times 3.14 \times 13 / 9\newlineL=15.7×13/9L = 15.7 \times 13 / 9\newlineL=204.1/9L = 204.1 / 9\newlineL22.677777...L \approx 22.677777...
  5. Round result: Round the result to the nearest tenth of an inch. \newlineL22.7L \approx 22.7 inches

More problems from Circles: word problems