Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Assign:

y=(1+x^(2))Arctan(x)-x

Assign:\newliney=(1+x2)Arctanxx y=\left(1+x^{2}\right) \operatorname{Arctan}{x}-x

Full solution

Q. Assign:\newliney=(1+x2)Arctanxx y=\left(1+x^{2}\right) \operatorname{Arctan}{x}-x
  1. Identify Components and Rules: Identify the function components and apply the product and chain rules.\newliney=(1+x2)arctan(x)2xy = (1 + x^2) \cdot \text{arctan}(x)^2 - x\newlinedydx=ddx[(1+x2)arctan(x)2]ddx[x]\frac{dy}{dx} = \frac{d}{dx}[(1 + x^2) \cdot \text{arctan}(x)^2] - \frac{d}{dx}[x]
  2. Apply Product and Chain Rules: Differentiate (1+x2)arctan(x)2(1 + x^2) \cdot \arctan(x)^2 using the product rule.\newlineLet u=1+x2u = 1 + x^2 and v=arctan(x)2v = \arctan(x)^2.\newlinedudx=2x\frac{du}{dx} = 2x, dvdx=2arctan(x)(11+x2)\frac{dv}{dx} = 2 \cdot \arctan(x) \cdot \left(\frac{1}{1 + x^2}\right)\newlinedydx=udvdx+vdudx\frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}\newlinedydx=(1+x2)2arctan(x)(11+x2)+arctan(x)22x\frac{dy}{dx} = (1 + x^2) \cdot 2 \cdot \arctan(x) \cdot \left(\frac{1}{1 + x^2}\right) + \arctan(x)^2 \cdot 2x
  3. Differentiate Using Product Rule: Simplify the expression.\newlinedydx=2arctan(x)+2xarctan(x)21\frac{dy}{dx} = 2 \cdot \arctan(x) + 2x \cdot \arctan(x)^2 - 1

More problems from Find derivatives of using multiple formulae