Identify Components and Rules: Identify the function components and apply the product and chain rules.y=(1+x2)⋅arctan(x)2−xdxdy=dxd[(1+x2)⋅arctan(x)2]−dxd[x]
Apply Product and Chain Rules: Differentiate (1+x2)⋅arctan(x)2 using the product rule.Let u=1+x2 and v=arctan(x)2.dxdu=2x, dxdv=2⋅arctan(x)⋅(1+x21)dxdy=u⋅dxdv+v⋅dxdudxdy=(1+x2)⋅2⋅arctan(x)⋅(1+x21)+arctan(x)2⋅2x
Differentiate Using Product Rule: Simplify the expression.dxdy=2⋅arctan(x)+2x⋅arctan(x)2−1
More problems from Find derivatives of using multiple formulae