Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The area of an equilateral triangle with side 
6sqrt3cm is
(a) 
27cm^(2)
(b) 
27sqrt3cm^(2)
(c) 
18sqrt3cm^(2)
(d) 
54sqrt3cm^(2)

The area of an equilateral triangle with side 63 cm 6 \sqrt{3} \mathrm{~cm} is\newline(a) 27 cm2 27 \mathrm{~cm}^{2} \newline(b) 273 cm2 27 \sqrt{3} \mathrm{~cm}^{2} \newline(c) 183 cm2 18 \sqrt{3} \mathrm{~cm}^{2} \newline(d) 543 cm2 54 \sqrt{3} \mathrm{~cm}^{2}

Full solution

Q. The area of an equilateral triangle with side 63 cm 6 \sqrt{3} \mathrm{~cm} is\newline(a) 27 cm2 27 \mathrm{~cm}^{2} \newline(b) 273 cm2 27 \sqrt{3} \mathrm{~cm}^{2} \newline(c) 183 cm2 18 \sqrt{3} \mathrm{~cm}^{2} \newline(d) 543 cm2 54 \sqrt{3} \mathrm{~cm}^{2}
  1. Formula for area: The formula for the area of an equilateral triangle is 34×side2\frac{\sqrt{3}}{4} \times \text{side}^2.
  2. Plug in side length: Plug in the side length: (3/4)×(63)2(\sqrt{3}/4) \times (6\sqrt{3})^2.
  3. Square side length: Square the side length: (34)×(36×3)\left(\frac{\sqrt{3}}{4}\right) \times (36 \times 3).
  4. Multiply by 108108: Multiply 3636 by 33: (3/4)×108(\sqrt{3}/4) \times 108.
  5. Final result: Multiply the result by 3/4\sqrt{3}/4: 3/4×108=273\sqrt{3}/4 \times 108 = 27\sqrt{3}.

More problems from Find derivatives of using multiple formulae