Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
The area of an equilateral triangle with side
6
3
c
m
6 \sqrt{3} \mathrm{~cm}
6
3
cm
is
\newline
(a)
27
c
m
2
27 \mathrm{~cm}^{2}
27
cm
2
\newline
(b)
27
3
c
m
2
27 \sqrt{3} \mathrm{~cm}^{2}
27
3
cm
2
\newline
(c)
18
3
c
m
2
18 \sqrt{3} \mathrm{~cm}^{2}
18
3
cm
2
\newline
(d)
54
3
c
m
2
54 \sqrt{3} \mathrm{~cm}^{2}
54
3
cm
2
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
The area of an equilateral triangle with side
6
3
c
m
6 \sqrt{3} \mathrm{~cm}
6
3
cm
is
\newline
(a)
27
c
m
2
27 \mathrm{~cm}^{2}
27
cm
2
\newline
(b)
27
3
c
m
2
27 \sqrt{3} \mathrm{~cm}^{2}
27
3
cm
2
\newline
(c)
18
3
c
m
2
18 \sqrt{3} \mathrm{~cm}^{2}
18
3
cm
2
\newline
(d)
54
3
c
m
2
54 \sqrt{3} \mathrm{~cm}^{2}
54
3
cm
2
Formula for area:
The formula for the area of an equilateral triangle is
3
4
×
side
2
\frac{\sqrt{3}}{4} \times \text{side}^2
4
3
×
side
2
.
Plug in side length:
Plug in the side length:
(
3
/
4
)
×
(
6
3
)
2
(\sqrt{3}/4) \times (6\sqrt{3})^2
(
3
/4
)
×
(
6
3
)
2
.
Square side length:
Square the side length:
(
3
4
)
×
(
36
×
3
)
\left(\frac{\sqrt{3}}{4}\right) \times (36 \times 3)
(
4
3
)
×
(
36
×
3
)
.
Multiply by
108
108
108
:
Multiply
36
36
36
by
3
3
3
:
(
3
/
4
)
×
108
(\sqrt{3}/4) \times 108
(
3
/4
)
×
108
.
Final result:
Multiply the result by
3
/
4
\sqrt{3}/4
3
/4
:
3
/
4
×
108
=
27
3
\sqrt{3}/4 \times 108 = 27\sqrt{3}
3
/4
×
108
=
27
3
.
More problems from Find derivatives of using multiple formulae
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
cos
(
x
)
f(x) = \cos(x)
f
(
x
)
=
cos
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
(
x
)
f(x) = \tan(x)
f
(
x
)
=
tan
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
f(x) = e^x
f
(
x
)
=
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
ln
(
x
)
f(x) = \ln(x)
f
(
x
)
=
ln
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
−
1
x
f(x) = \tan^{-1}{x}
f
(
x
)
=
tan
−
1
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
e
x
f(x) = x e^x
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
x
f(x) = \frac{e^x}{x}
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
(
x
+
1
)
f(x) = e^{(x + 1)}
f
(
x
)
=
e
(
x
+
1
)
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
+
3
f(x) = \sqrt{x+3}
f
(
x
)
=
x
+
3
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
g
(
x
)
g(x)
g
(
x
)
.
\newline
g
(
x
)
=
ln
(
2
x
)
g(x) = \ln(2x)
g
(
x
)
=
ln
(
2
x
)
\newline
g
′
(
x
)
=
g^{\prime}(x) =
g
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant