Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr5)(x^(2)-25)/(x-5)=_____
(A) 7
(B) 5
(C) 10
(D) 9
(E) 0

limx5x225x5=_____\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}=\_\_\_\_\_\newline(A) 77\newline(B) 55\newline(C) 1010\newline(D) 99\newline(E) 00\newline

Full solution

Q. limx5x225x5=_____\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}=\_\_\_\_\_\newline(A) 77\newline(B) 55\newline(C) 1010\newline(D) 99\newline(E) 00\newline
  1. Identify indeterminate form: Identify the indeterminate form.\newlineWe need to evaluate the limit of the function (x225)/(x5)(x^2 - 25)/(x - 5) as xx approaches 55. If we substitute x=5x = 5 directly into the function, we get (5225)/(55)=0/0(5^2 - 25)/(5 - 5) = 0/0, which is an indeterminate form.
  2. Factor numerator: Factor the numerator.\newlineThe numerator x225x^2 - 25 is a difference of squares and can be factored as (x+5)(x5)(x + 5)(x - 5).
  3. Simplify expression: Simplify the expression.\newlineWe can simplify the expression by canceling out the common factor (x5)(x - 5) from the numerator and the denominator.\newlineSo, (x225)/(x5)(x^2 - 25)/(x - 5) becomes (x+5)(x5)/(x5)=x+5(x + 5)(x - 5)/(x - 5) = x + 5, when x5x \neq 5.
  4. Evaluate limit: Evaluate the limit.\newlineNow that we have simplified the expression, we can find the limit as xx approaches 55 by substituting x=5x = 5 into the simplified expression.\newlinelimx5(x+5)=5+5=10\lim_{x \to 5}(x + 5) = 5 + 5 = 10.

More problems from Find derivatives of using multiple formulae