Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A regular pentagon box has a base perimeter PP of 5b210b155b^2 - 10b - 15 units and a height of bb units. The area of a regular pentagon is A=12aPA = \frac{1}{2} aP, where a=a = apothem and P=P = perimeter. If the apothem of the base is 2b42b - 4 units, what is the surface area of the pentagon box?

Full solution

Q. A regular pentagon box has a base perimeter PP of 5b210b155b^2 - 10b - 15 units and a height of bb units. The area of a regular pentagon is A=12aPA = \frac{1}{2} aP, where a=a = apothem and P=P = perimeter. If the apothem of the base is 2b42b - 4 units, what is the surface area of the pentagon box?
  1. Calculate Base Area: Calculate the area of the base of the pentagon.\newlineWe are given the perimeter of the base PP as 5b210b155b^2− 10b− 15 units and the apothem aa as 2b42b − 4 units. The formula for the area of a regular pentagon is A=12aPA = \frac{1}{2} aP. Let's plug in the values to find the area of the base.\newlineA=12×(2b4)×(5b210b15)A = \frac{1}{2} \times (2b − 4) \times (5b^2− 10b− 15)
  2. Simplify Base Area: Simplify the expression for the area of the base. \newlineA=12×(2b4)×(5b210b15)A = \frac{1}{2} \times (2b − 4) \times (5b^2− 10b− 15)\newlineA=(b2)×(5b210b15)A = (b − 2) \times (5b^2− 10b− 15)\newlineNow, distribute (b2)(b − 2) across (5b210b15)(5b^2− 10b− 15).\newlineA=(b2)×5b2(b2)×10b(b2)×15A = (b − 2) \times 5b^2 - (b − 2) \times 10b - (b − 2) \times 15
  3. Distribute Base Area: Perform the distribution to find the area of the base. \newlineA=5b310b215b10b2+20b+30A = 5b^3 - 10b^2 - 15b - 10b^2 + 20b + 30\newlineNow, combine like terms.\newlineA=5b320b2+5b+30A = 5b^3 - 20b^2 + 5b + 30
  4. Calculate Lateral Surface Area: Calculate the lateral surface area of the pentagon box.\newlineThe lateral surface area of a prism is the perimeter of the base times the height. Since we have a pentagon box, we will use the given perimeter and height.\newlineLateral Surface Area = P×heightP \times \text{height}\newlineLateral Surface Area = (5b210b15)×b(5b^2- 10b- 15) \times b
  5. Simplify Lateral Surface Area: Simplify the expression for the lateral surface area.\newlineLateral Surface Area = 5b310b215b5b^3 - 10b^2 - 15b
  6. Calculate Total Surface Area: Calculate the total surface area of the pentagon box.\newlineThe total surface area is the sum of the area of the base and the lateral surface area. Since the pentagon box has two bases, we need to double the area of the base.\newlineTotal Surface Area = 2×Area of base+Lateral Surface Area2 \times \text{Area of base} + \text{Lateral Surface Area}\newlineTotal Surface Area = 2×(5b320b2+5b+30)+(5b310b215b)2 \times (5b^3 - 20b^2 + 5b + 30) + (5b^3 - 10b^2 - 15b)
  7. Simplify Total Surface Area: Simplify the expression for the total surface area.\newlineTotal Surface Area = 10b340b2+10b+60+5b310b215b10b^3 - 40b^2 + 10b + 60 + 5b^3 - 10b^2 - 15b\newlineNow, combine like terms.\newlineTotal Surface Area = 15b350b25b+6015b^3 - 50b^2 - 5b + 60

More problems from Area of quadrilaterals and triangles: word problems