Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

a) 
lim_(x rarr2)(x^(2)+x-6)/(x-2)

limx2x2+x6x2 \lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2} =

Full solution

Q. limx2x2+x6x2 \lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2} =
  1. Factorize the numerator: Simplify the expression in the numerator:\newline(x2+x6)(x^2 + x - 6) can be factored into (x2)(x+3)(x - 2)(x + 3).\newlineCalculation: x2+x6=x22x+3x6=(x(x2)+3(x2))=(x2)(x+3)x^2 + x - 6 = x^2 - 2x + 3x - 6 = (x(x - 2) + 3(x - 2)) = (x - 2)(x + 3).
  2. Substitute factored form: Substitute the factored form back into the original limit expression: limx2(x2)(x+3)x2\lim_{x \rightarrow 2}\frac{(x - 2)(x + 3)}{x - 2}. Calculation: (x2)(x - 2) terms cancel out, leaving limx2(x+3)\lim_{x \rightarrow 2}(x + 3).
  3. Evaluate the limit: Evaluate the limit of the simplified expression: limx2(x+3)=2+3\lim_{x \rightarrow 2}(x + 3) = 2 + 3. Calculation: 2+3=52 + 3 = 5.

More problems from Find derivatives of using multiple formulae