Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A function h(t)h(t) increases by 22 over every unit interval in tt and h(0)=0h(0) = 0.\newlineWhich could be a function rule for h(t)h(t)?\newlineChoices:\newline(A) h(t)=2th(t) = 2^t\newline(B) h(t)=t+2h(t) = -t + 2\newline(C) h(t)=2th(t) = 2t\newline(D) h(t)=t2h(t) = \frac{-t}{2}

Full solution

Q. A function h(t)h(t) increases by 22 over every unit interval in tt and h(0)=0h(0) = 0.\newlineWhich could be a function rule for h(t)h(t)?\newlineChoices:\newline(A) h(t)=2th(t) = 2^t\newline(B) h(t)=t+2h(t) = -t + 2\newline(C) h(t)=2th(t) = 2t\newline(D) h(t)=t2h(t) = \frac{-t}{2}
  1. Check Initial Condition: Check the initial condition h(0)=0h(0) = 0 for each function choice.\newline(A) h(0)=20=1h(0) = 2^0 = 1, not 00.\newline(B) h(0)=0+2=2h(0) = -0 + 2 = 2, not 00.\newline(C) h(0)=2×0=0h(0) = 2\times0 = 0, this one works.\newline(D) h(0)=0/2=0h(0) = -0/2 = 0, this one also works.
  2. Check Rate of Increase: Check the rate of increase for each function that passed Step 11.\newline(C) h(1)=2×1=2h(1) = 2\times1 = 2, so it increases by 22 over one unit interval.\newline(D) h(1)=12h(1) = -\frac{1}{2}, it decreases, not increases.
  3. Choose Correct Function: Choose the correct function based on the initial condition and rate of increase.\newlineThe correct function is (C) h(t)=2th(t) = 2t because it satisfies both the initial condition and the rate of increase.

More problems from Find derivatives of sine and cosine functions