Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A curve is defined by the parametric equations 
x(t)=9t^(3)+2t^(2)-5t-10 and 
y(t)=-8t^(2). Find 
(dy)/(dx).
Answer:

A curve is defined by the parametric equations x(t)=9t3+2t25t10 x(t)=9 t^{3}+2 t^{2}-5 t-10 and y(t)=8t2 y(t)=-8 t^{2} . Find dydx \frac{d y}{d x} .\newlineAnswer:

Full solution

Q. A curve is defined by the parametric equations x(t)=9t3+2t25t10 x(t)=9 t^{3}+2 t^{2}-5 t-10 and y(t)=8t2 y(t)=-8 t^{2} . Find dydx \frac{d y}{d x} .\newlineAnswer:
  1. Find dxdt\frac{dx}{dt}: To find dydx\frac{dy}{dx} for parametric equations, we need to find dydt\frac{dy}{dt} and dxdt\frac{dx}{dt} separately and then divide dydt\frac{dy}{dt} by dxdt\frac{dx}{dt}.
  2. Find dydt\frac{dy}{dt}: First, let's find dxdt\frac{dx}{dt} for x(t)=9t3+2t25t10x(t)=9t^{3}+2t^{2}-5t-10. Using the power rule for derivatives, we get: dxdt=ddt(9t3)+ddt(2t2)ddt(5t)ddt(10)\frac{dx}{dt} = \frac{d}{dt}(9t^{3}) + \frac{d}{dt}(2t^{2}) - \frac{d}{dt}(5t) - \frac{d}{dt}(10) dxdt=39t2+22t150\frac{dx}{dt} = 3\cdot9t^{2} + 2\cdot2t^{1} - 5 - 0 dxdt=27t2+4t5\frac{dx}{dt} = 27t^{2} + 4t - 5
  3. Calculate (dydx):</b>Next,wefind$dydt(\frac{dy}{dx}):</b> Next, we find \$\frac{dy}{dt} for y(t)=8t2y(t)=-8t^{2}. Using the power rule for derivatives, we get: dydt=ddt(8t2)\frac{dy}{dt} = \frac{d}{dt}(-8t^{2}) dydt=2(8)t1\frac{dy}{dt} = 2*(-8)t^{1} dydt=16t\frac{dy}{dt} = -16t
  4. Simplify the expression: Now we have dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}, so we can find dydx\frac{dy}{dx} by dividing dydt\frac{dy}{dt} by dxdt\frac{dx}{dt}.
    dydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
    dydx=16t27t2+4t5\frac{dy}{dx} = \frac{-16t}{27t^{2} + 4t - 5}
  5. Simplify the expression: Now we have dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}, so we can find dydx\frac{dy}{dx} by dividing dydt\frac{dy}{dt} by dxdt\frac{dx}{dt}. \newlinedydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}\newlinedydx=16t27t2+4t5\frac{dy}{dx} = \frac{-16t}{27t^{2} + 4t - 5} We can simplify the expression by factoring out tt from the numerator and denominator if possible.\newlineHowever, in this case, we cannot factor out tt from the denominator because not all terms in the denominator are multiples of tt.\newlineSo, the final simplified form of dydx\frac{dy}{dx} is:\newlinedydx=16t27t2+4t5\frac{dy}{dx} = \frac{-16t}{27t^{2} + 4t - 5}

More problems from Find derivatives of using multiple formulae