Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A curve is defined by the parametric equations 
x(t)=10t^(3)-5t^(2)+6t and 
y(t)=-t^(3). Find 
(dy)/(dx).
Answer:

A curve is defined by the parametric equations x(t)=10t35t2+6t x(t)=10 t^{3}-5 t^{2}+6 t and y(t)=t3 y(t)=-t^{3} . Find dydx \frac{d y}{d x} .\newlineAnswer:

Full solution

Q. A curve is defined by the parametric equations x(t)=10t35t2+6t x(t)=10 t^{3}-5 t^{2}+6 t and y(t)=t3 y(t)=-t^{3} . Find dydx \frac{d y}{d x} .\newlineAnswer:
  1. Find Derivative of xx: To find the derivative of yy with respect to xx (dydx\frac{dy}{dx}) for a curve defined by parametric equations, we need to find dydt\frac{dy}{dt} and dxdt\frac{dx}{dt} separately and then divide dydt\frac{dy}{dt} by dxdt\frac{dx}{dt}.
  2. Find Derivative of y: First, let's find the derivative of xx with respect to tt, which is dxdt\frac{dx}{dt}. Given x(t)=10t35t2+6tx(t) = 10t^3 - 5t^2 + 6t, we use the power rule for derivatives: ddt(tn)=nt(n1)\frac{d}{dt}(t^n) = n\cdot t^{(n-1)}. dxdt=ddt(10t3)ddt(5t2)+ddt(6t)=310t(31)25t(21)+61t(11)=30t210t+6\frac{dx}{dt} = \frac{d}{dt}(10t^3) - \frac{d}{dt}(5t^2) + \frac{d}{dt}(6t) = 3\cdot 10t^{(3-1)} - 2\cdot 5t^{(2-1)} + 6\cdot 1t^{(1-1)} = 30t^2 - 10t + 6
  3. Calculate dydx\frac{dy}{dx}: Next, we find the derivative of yy with respect to tt, which is dydt\frac{dy}{dt}. Given y(t)=t3y(t) = -t^3, we again use the power rule for derivatives. dydt=ddt(t3)=3t31=3t2\frac{dy}{dt} = \frac{d}{dt}(-t^3) = -3t^{3-1} = -3t^2
  4. Simplify dydx\frac{dy}{dx}: Now we have dxdt=30t210t+6\frac{dx}{dt} = 30t^2 - 10t + 6 and dydt=3t2\frac{dy}{dt} = -3t^2. To find dydx\frac{dy}{dx}, we divide dydt\frac{dy}{dt} by dxdt\frac{dx}{dt}.
    dydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
    =3t230t210t+6\quad\quad\quad = \frac{-3t^2}{30t^2 - 10t + 6}
  5. Simplify dydx\frac{dy}{dx}: Now we have dxdt=30t210t+6\frac{dx}{dt} = 30t^2 - 10t + 6 and dydt=3t2\frac{dy}{dt} = -3t^2. To find dydx\frac{dy}{dx}, we divide dydt\frac{dy}{dt} by dxdt\frac{dx}{dt}.
    dydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
    =3t230t210t+6\quad\quad\quad = \frac{-3t^2}{30t^2 - 10t + 6}We simplify the expression for dydx\frac{dy}{dx} by dividing both the numerator and the denominator by the common term t2t^2, assuming dxdt=30t210t+6\frac{dx}{dt} = 30t^2 - 10t + 600.
    dxdt=30t210t+6\frac{dx}{dt} = 30t^2 - 10t + 611
    dxdt=30t210t+6\frac{dx}{dt} = 30t^2 - 10t + 622

More problems from Find derivatives of using multiple formulae