Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

a^(-1)=sqrt(x^(2)+x+1),b=root(3)(x^(3)-1)=>a^(2)b^(3)= ?
A) 
x-1
B) 
(x+1)^(2)(x^(3)-1)
C) 
(x-1)/(x)
D) 
x^(2)-1
E) 
(x^(2)-1)/(x^(2))

3939. a1=x2+x+1,b=x313a2b3= a^{-1}=\sqrt{x^{2}+x+1}, b=\sqrt[3]{x^{3}-1} \Rightarrow a^{2} b^{3}= ?\newlineA) x1 x-1 \newlineB) (x+1)2(x31) (x+1)^{2}\left(x^{3}-1\right) \newlineC) x1x \frac{x-1}{x} \newlineD) x21 x^{2}-1 \newlineE) x21x2 \frac{x^{2}-1}{x^{2}}

Full solution

Q. 3939. a1=x2+x+1,b=x313a2b3= a^{-1}=\sqrt{x^{2}+x+1}, b=\sqrt[3]{x^{3}-1} \Rightarrow a^{2} b^{3}= ?\newlineA) x1 x-1 \newlineB) (x+1)2(x31) (x+1)^{2}\left(x^{3}-1\right) \newlineC) x1x \frac{x-1}{x} \newlineD) x21 x^{2}-1 \newlineE) x21x2 \frac{x^{2}-1}{x^{2}}
  1. Find a^22 Expression: First, we need to find the expression for a2 a^2 given that a1=x2+x+1 a^{-1} = \sqrt{x^2 + x + 1} .\newlineTo find a2 a^2 , we can take the reciprocal of a1 a^{-1} and then square it.\newlinea=1x2+x+1 a = \frac{1}{\sqrt{x^2 + x + 1}} \newlinea2=(1x2+x+1)2 a^2 = \left(\frac{1}{\sqrt{x^2 + x + 1}}\right)^2 \newlinea2=1x2+x+1 a^2 = \frac{1}{x^2 + x + 1}
  2. Find b^33 Expression: Next, we need to find the expression for b3 b^3 given that b=x313 b = \sqrt[3]{x^3 - 1} .\newlineTo find b3 b^3 , we simply cube b b .\newlineb3=(x313)3 b^3 = \left(\sqrt[3]{x^3 - 1}\right)^3 \newlineb3=x31 b^3 = x^3 - 1
  3. Multiply a^22 and b^33: Now, we need to multiply a2 a^2 and b3 b^3 to find a2b3 a^2 b^3 .\newlinea2b3=(1x2+x+1)(x31) a^2 b^3 = \left(\frac{1}{x^2 + x + 1}\right) \cdot (x^3 - 1)
  4. Simplify the Expression: We can simplify the expression by multiplying the numerator of a2 a^2 with b3 b^3 .\newlinea2b3=x31x2+x+1 a^2 b^3 = \frac{x^3 - 1}{x^2 + x + 1}
  5. Check for Further Simplification: We need to check if the expression x31x2+x+1 \frac{x^3 - 1}{x^2 + x + 1} can be simplified further or matches any of the given options.\newlineHowever, the denominator x2+x+1 x^2 + x + 1 does not factor easily, and there is no obvious common factor between the numerator and the denominator.\newlineTherefore, the expression is already in its simplest form.

More problems from Find derivatives of using multiple formulae