Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following radian measures is equal to 
315^(@) ?
Choose 1 answer:
A) 
(5pi)/(4) radians
(B) 
(7pi)/(4) radians
(C) 
(9pi)/(4) radians
(D) 
(11 pi)/(4) radians

Which of the following radian measures is equal to 315 315^{\circ} ?\newlineChoose 11 answer:\newline(A) 5π4 \frac{5 \pi}{4} radians\newlineB 7π4 \frac{7 \pi}{4} radians\newline(C) 9π4 \frac{9 \pi}{4} radians\newline(D) 11π4 \frac{11 \pi}{4} radians

Full solution

Q. Which of the following radian measures is equal to 315 315^{\circ} ?\newlineChoose 11 answer:\newline(A) 5π4 \frac{5 \pi}{4} radians\newlineB 7π4 \frac{7 \pi}{4} radians\newline(C) 9π4 \frac{9 \pi}{4} radians\newline(D) 11π4 \frac{11 \pi}{4} radians
  1. Identify formula for conversion: Identify the formula to convert degrees to radians. The formula is radians=degrees×(π180)\text{radians} = \text{degrees} \times \left(\frac{\pi}{180^\circ}\right).
  2. Convert 315315 degrees to radians: Convert 315315 degrees into radians using the formula. By substituting 315315 degrees into the formula, we get 315×(π180)=(315180)×π=(74)×π315^\circ \times \left(\frac{\pi}{180^\circ}\right) = \left(\frac{315}{180}\right) \times \pi = \left(\frac{7}{4}\right) \times \pi radians.
  3. Simplify fraction (315180):</b>Simplifythe<ahref="https://www.bytelearn.com/mathtopics/fractions"target="blank"class="backlink">fraction</a>$(315180)(\frac{315}{180}):</b> Simplify the <a href="https://www.bytelearn.com/math-topics/fractions" target="_blank" class="backlink">fraction</a> \$(\frac{315}{180}) to its lowest terms. Dividing both the numerator and the denominator by 4545, we get (74)(\frac{7}{4}).
  4. Choose correct option for 315315 degrees: Choose the correct option of radians for 315315 degrees. The correct option is (74)×π(\frac{7}{4}) \times \pi radians, which is equivalent to 315315 degrees.

More problems from Convert between radians and degrees