Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following expressions is equivalent to 
root(4)(32^(16)) ?
Choose 1 answer:
(A) 
2^(20)
(B) 
2^(625)
(C) 
32^(2)
(D) 
32^(12)

Which of the following expressions is equivalent to 32164 \sqrt[4]{32^{16}} ?\newlineChoose 11 answer:\newline(A) 220 2^{20} \newline(B) 2625 2^{625} \newline(C) 322 32^{2} \newline(D) 3212 32^{12}

Full solution

Q. Which of the following expressions is equivalent to 32164 \sqrt[4]{32^{16}} ?\newlineChoose 11 answer:\newline(A) 220 2^{20} \newline(B) 2625 2^{625} \newline(C) 322 32^{2} \newline(D) 3212 32^{12}
  1. Express as Power of 22: First, let's express 3232 as a power of 22 since 3232 is 252^5.\newline32164=(25)164\sqrt[4]{32^{16}} = \sqrt[4]{(2^5)^{16}}
  2. Apply Power Rule: Now, apply the power rule (am)n=amn(a^{m})^{n} = a^{m*n}.\newline(25)164=25164\sqrt[4]{(2^{5})^{16}} = \sqrt[4]{2^{5*16}}
  3. Multiply Exponents: Multiply the exponents inside the root. 25×164=2804\sqrt[4]{2^{5\times16}} = \sqrt[4]{2^{80}}
  4. Use Fourth Root Rule: The fourth root of a number is the same as raising that number to the 14\frac{1}{4} power.\newline2804=(280)14\sqrt[4]{2^{80}} = (2^{80})^{\frac{1}{4}}
  5. Apply Power Rule Again: Apply the power rule again (am)n=amn(a^m)^n = a^{m*n}.(280)1/4=2801/4(2^{80})^{1/4} = 2^{80*1/4}
  6. Simplify Exponents: Multiply the exponents to simplify. 280×14=28042^{80\times\frac{1}{4}} = 2^{\frac{80}{4}}
  7. Divide to Find Exponent: Divide 8080 by 44 to find the exponent.\newline2(80/4)=2202^{(80/4)} = 2^{20}