Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expressions are equivalent to 
5^(12)*5^(8) ?
Choose 2 answers:
A 
25^(20)
B 
(25^(5))^(4)
c. 
(5^(3)*5^(2))^(4)
D 
(5^(5))^(4)

Which expressions are equivalent to \newline512585^{12} \cdot 5^{8}?\newlineChoose 22 answers:\newlineA \newline252025^{20}\newlineB \newline(255)4(25^{5})^{4}\newlineC. \newline(5352)4(5^{3} \cdot 5^{2})^{4}\newlineD \newline(55)4(5^{5})^{4}

Full solution

Q. Which expressions are equivalent to \newline512585^{12} \cdot 5^{8}?\newlineChoose 22 answers:\newlineA \newline252025^{20}\newlineB \newline(255)4(25^{5})^{4}\newlineC. \newline(5352)4(5^{3} \cdot 5^{2})^{4}\newlineD \newline(55)4(5^{5})^{4}
  1. Combine exponents using product rule: Combine the exponents of the same base using the product rule for exponents, which states that aman=am+na^m \cdot a^n = a^{m+n} when the base aa is the same.\newlineCalculation: 51258=512+8=5205^{12} \cdot 5^{8} = 5^{12+8} = 5^{20}
  2. Evaluate choice A: Evaluate each answer choice to see if it is equivalent to 5205^{20}.\newlineA. 2520=(52)20=5220=54025^{20} = (5^2)^{20} = 5^{2\cdot20} = 5^{40}, which is not equal to 5205^{20}.
  3. Evaluate choice B: Evaluate choice B.\newlineB. (255)4=((52)5)4=(525)4=5104=540(25^{5})^{4} = ((5^{2})^{5})^{4} = (5^{2\cdot 5})^{4} = 5^{10\cdot 4} = 5^{40}, which is not equal to 5205^{20}.
  4. Evaluate choice C: Evaluate choice C.\newlineC. (5352)4=(53+2)4=554=520(5^{3}\cdot5^{2})^{4} = (5^{3+2})^{4} = 5^{5\cdot4} = 5^{20}, which is equal to 5205^{20}.
  5. Evaluate choice D: Evaluate choice D.\newlineD. (55)4=55×4=520(5^{5})^{4} = 5^{5\times4} = 5^{20}, which is equal to 5205^{20}.

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago