Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expressions are equivalent to 
4^(-2)*7^(-2) ?
Choose 2 answers:
A 
(4*7)^(-4)
B) 
(1)/(28^(2))
c) 
(7^(-2))/(4^(2))
D 
(4*7)^(4)

Which expressions are equivalent to \newline42724^{-2} \cdot 7^{-2}?\newlineChoose 22 answers:\newlineA) \newline(47)4(4 \cdot 7)^{-4}\newlineB) \newline1282\frac{1}{28^{2}}\newlineC) \newline7242\frac{7^{-2}}{4^{2}}\newlineD) \newline(47)4(4 \cdot 7)^{4}

Full solution

Q. Which expressions are equivalent to \newline42724^{-2} \cdot 7^{-2}?\newlineChoose 22 answers:\newlineA) \newline(47)4(4 \cdot 7)^{-4}\newlineB) \newline1282\frac{1}{28^{2}}\newlineC) \newline7242\frac{7^{-2}}{4^{2}}\newlineD) \newline(47)4(4 \cdot 7)^{4}
  1. Understanding the expression: Understand the given expression and the properties of exponents.\newlineThe given expression is 42×724^{-2} \times 7^{-2}. According to the properties of exponents, when multiplying powers with the same exponent but different bases, you can combine the bases and keep the exponent.
  2. Combining the bases: Apply the property of exponents to combine the bases.\newline42724^{-2} \cdot 7^{-2} can be written as (47)2(4 \cdot 7)^{-2} because the exponents are the same.\newlineCalculation: (47)2=282(4 \cdot 7)^{-2} = 28^{-2}
  3. Comparing the choices: Compare the result with the given choices.\newlineWe have (4×7)2(4 \times 7)^{-2} which is equivalent to 28228^{-2}. Now we need to find which choices match this expression.
  4. Analyzing choice A: Analyze choice A.\newlineChoice A is (4×7)4(4 \times 7)^{-4}. This is not equivalent to 28228^{-2} because the exponent is 4-4, not 2-2.
  5. Analyzing choice B: Analyze choice B.\newlineChoice B is (1)/(282)(1)/(28^{2}). This is equivalent to 28228^{-2} because a negative exponent indicates the reciprocal of the base raised to the positive exponent.\newlineCalculation: 282=1/(282)28^{-2} = 1/(28^2)
  6. Analyzing choice C: Analyze choice C.\newlineChoice C is (72)/(42)(7^{-2})/(4^{2}). This is not equivalent to 28228^{-2} because the bases are not multiplied together, and the exponents are not the same.
  7. Analyzing choice D: Analyze choice D.\newlineChoice D is (4×7)4(4 \times 7)^{4}. This is not equivalent to 28228^{-2} because the exponent is 44, not 2-2, and it is positive, not negative.
  8. Concluding the correct choices: Conclude with the correct choices.\newlineThe correct choices that are equivalent to 42×724^{-2}\times 7^{-2} are B) (1282)\left(\frac{1}{28^{2}}\right) and none of the other choices match.

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago