Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the value of 
tan((pi)/(3)) ?
Choose 1 answer:
(A) 
(1)/(2)
(B) 
(sqrt3)/(3)
(c) 
(sqrt3)/(2)
(D) 
sqrt3

What is the value of tan(π3) \tan \left(\frac{\pi}{3}\right) ?\newlineChoose 11 answer:\newline(A) 12 \frac{1}{2} \newline(B) 33 \frac{\sqrt{3}}{3} \newline(C) 32 \frac{\sqrt{3}}{2} \newline(D) 3 \sqrt{3}

Full solution

Q. What is the value of tan(π3) \tan \left(\frac{\pi}{3}\right) ?\newlineChoose 11 answer:\newline(A) 12 \frac{1}{2} \newline(B) 33 \frac{\sqrt{3}}{3} \newline(C) 32 \frac{\sqrt{3}}{2} \newline(D) 3 \sqrt{3}
  1. Recalling the unit circle: To find the value of tan(π3)\tan\left(\frac{\pi}{3}\right), we need to recall the unit circle or the special triangles. The angle π3\frac{\pi}{3} radians corresponds to 6060 degrees.
  2. Using a 303060-6090-90 triangle: In a 303060-6090-90 right triangle, the sides are in the ratio 1:3:21 : \sqrt{3} : 2. The shortest side (opposite the 3030-degree angle) is 11, the side opposite the 6060-degree angle (which is tan(π3)\tan\left(\frac{\pi}{3}\right)) is 3\sqrt{3}, and the hypotenuse (opposite the 9090-degree angle) is 22.
  3. Finding the tangent of π3\frac{\pi}{3}: The tangent of an angle in a right triangle is the ratio of the length of the opposite side to the length of the adjacent side. So, tan(π3)=length of opposite side to 60length of adjacent side to 60\tan\left(\frac{\pi}{3}\right) = \frac{\text{length of opposite side to } 60^\circ}{\text{length of adjacent side to } 60^\circ}.
  4. Applying the side ratios: Using the side ratios for a 303060-6090-90 triangle, tan(π3)=31=3\tan\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{1} = \sqrt{3}.

More problems from Mean, median, mode, and range: find the missing number