Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the following equation for 
x.

2x+1=sqrt(x+2)

x=

Solve the following equation for x x .\newline2x+1=x+2 2 x+1=\sqrt{x+2} \newlinex= x=

Full solution

Q. Solve the following equation for x x .\newline2x+1=x+2 2 x+1=\sqrt{x+2} \newlinex= x=
  1. Square both sides: Square both sides of the equation to eliminate the square root.\newline(2x+1)2=(x+2)2(2x + 1)^2 = (\sqrt{x + 2})^2
  2. Expand using FOIL method: Expand the left side of the equation using the FOIL method (First, Outer, Inner, Last).\newline(2x+1)(2x+1)=x+2(2x + 1)(2x + 1) = x + 2\newline4x2+2x+2x+1=x+24x^2 + 2x + 2x + 1 = x + 2
  3. Combine like terms: Combine like terms on the left side of the equation. 4x2+4x+1=x+24x^2 + 4x + 1 = x + 2
  4. Subtract xx from both sides: Subtract xx from both sides of the equation to bring all xx terms to one side.\newline4x2+4x+1x=x+2x4x^2 + 4x + 1 - x = x + 2 - x\newline4x2+3x+1=24x^2 + 3x + 1 = 2
  5. Subtract 22 from both sides: Subtract 22 from both sides of the equation to set the equation to zero.\newline4x2+3x+12=04x^2 + 3x + 1 - 2 = 0\newline4x2+3x1=04x^2 + 3x - 1 = 0
  6. Quadratic equation: Now we have a quadratic equation. We can either factor it, complete the square, or use the quadratic formula to solve for xx. The quadratic formula is x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}. For this equation, a=4a = 4, b=3b = 3, and c=1c = -1.
  7. Calculate discriminant: Calculate the discriminant b24acb^2 - 4ac to determine if there are real solutions.\newlineDiscriminant = 324(4)(1)3^2 - 4(4)(-1)\newlineDiscriminant = 9(16)9 - (-16)\newlineDiscriminant = 9+169 + 16\newlineDiscriminant = 25{25}
  8. Use quadratic formula: Since the discriminant is positive, there are two real solutions. Use the quadratic formula to find the values of xx.x=3±2524x = \frac{{-3 \pm \sqrt{25}}}{{2 \cdot 4}}x=3±58x = \frac{{-3 \pm 5}}{8}
  9. Calculate possible values for x: Calculate the two possible values for x.\newlinex=3+58x = \frac{-3 + 5}{8} or x=358x = \frac{-3 - 5}{8}\newlinex=28x = \frac{2}{8} or x=88x = \frac{-8}{8}\newlinex=14x = \frac{1}{4} or x=1x = -1
  10. Check solutions in original equation: We need to check both solutions in the original equation to ensure they do not result in taking the square root of a negative number.\newlineCheck x=14x = \frac{1}{4}:\newline2(14)+1=14+22\left(\frac{1}{4}\right) + 1 = \sqrt{\frac{1}{4} + 2}\newline12+1=2.25\frac{1}{2} + 1 = \sqrt{2.25}\newline1.5=1.51.5 = 1.5 (True)\newlineCheck x=1x = -1:\newline2(1)+1=1+22(-1) + 1 = \sqrt{-1 + 2}\newline2+1=1-2 + 1 = \sqrt{1}\newline1=1-1 = 1 (False)

More problems from Solve radical equations