Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
a.

{:[-(1)/(4)a-4=(7)/(4)a-3],[a=◻]:}

Solve for a a .\newline14a4=74a3a= \begin{array}{l} -\frac{1}{4} a-4=\frac{7}{4} a-3 \\ a=\square \end{array}

Full solution

Q. Solve for a a .\newline14a4=74a3a= \begin{array}{l} -\frac{1}{4} a-4=\frac{7}{4} a-3 \\ a=\square \end{array}
  1. Write equation: Write down the given equation.\newline14a4=74a3-\frac{1}{4}a - 4 = \frac{7}{4}a - 3\newlineWe need to solve for aa by isolating it on one side of the equation.
  2. Add terms with a: Add (14)a(\frac{1}{4})a to both sides to start moving all terms with a to one side.\newline-\left(\frac{1}{4}\right)a - 4 + \left(\frac{1}{4}\right)a = \left(\frac{7}{4}\right)a - 3 + \left(\frac{1}{4}\right)a\(\newlineThis simplifies to:\newline\$-4 = \left(\frac{7}{4}\right)a + \left(\frac{1}{4}\right)a - 3\)
  3. Combine like terms: Combine like terms on the right side of the equation.\(\newline\)\((\frac{7}{4})a + (\frac{1}{4})a = (\frac{8}{4})a\)\(\newline\)This simplifies to:\(\newline\)\(-4 = 2a - 3\)
  4. Isolate term with \(a\): Add \(3\) to both sides to isolate the term with \(a\).
    \(-4 + 3 = 2a - 3 + 3\)
    This simplifies to:
    \(-1 = 2a\)
  5. Divide both sides: Divide both sides by \(2\) to solve for \(a\).\(\newline\)\(-\frac{1}{2} = a\)

More problems from Solve linear equations with variables on both sides