Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
Rewrite the expression in the form 
y^(n).

y^(-4)*y^(3)=

Simplify.\newlineRewrite the expression in the form \newliney(n).y^{(n)}.\newliney(4)y(3)=y^{(-4)} \cdot y^{(3)} =

Full solution

Q. Simplify.\newlineRewrite the expression in the form \newliney(n).y^{(n)}.\newliney(4)y(3)=y^{(-4)} \cdot y^{(3)} =
  1. Identify base and exponents: Identify the base and the exponents of the terms in the expression. In y4y3y^{-4} \cdot y^{3}, yy is the base raised to the exponents 4-4 and 33, respectively.\newlineBase: yy\newlineExponent 11: 4-4\newlineExponent 22: 33
  2. Apply product rule for exponents: Apply the product rule for exponents, which states that when multiplying two powers with the same base, you add the exponents.\newliney4y3=y4+3y^{-4} \cdot y^{3} = y^{-4 + 3}
  3. Perform addition of exponents: Perform the addition of the exponents. y(4+3)=y1y^{(-4 + 3)} = y^{-1}
  4. Write final simplified expression: Write the final simplified expression.\newlineThe expression y4y3y^{-4} \cdot y^{3} simplifies to y1y^{-1}.

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago