Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
Rewrite the expression in the form 
6^(n).

(6^(-6))/(6^(-5))=

Simplify.\newlineRewrite the expression in the form \newline6n6^{n}.\newline6665=\frac{6^{-6}}{6^{-5}}=

Full solution

Q. Simplify.\newlineRewrite the expression in the form \newline6n6^{n}.\newline6665=\frac{6^{-6}}{6^{-5}}=
  1. Use Exponent Property: We have the expression (66)/(65)(6^{-6})/(6^{-5}). To simplify this, we will use the property of exponents that states when dividing like bases, we subtract the exponents.\newlineSo, we will subtract the exponent of the denominator from the exponent of the numerator.\newline66/65=66(5)6^{-6} / 6^{-5} = 6^{-6 - (-5)}
  2. Subtract Exponents: Perform the subtraction of the exponents. 6(6(5))=6(6+5)6^{(-6 - (-5))} = 6^{(-6 + 5)}
  3. Add Numbers: Simplify the exponent by adding the numbers. 6(6+5)=616^{(-6 + 5)} = 6^{-1}
  4. Final Simplified Expression: The expression is now simplified to 66 raised to the power of 1-1, which is in the form of 6n6^{n} where nn is 1-1.

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago