Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
Rewrite the expression in the form 
5^(n).

(5^(-5))/(5^(8))=

Simplify.\newlineRewrite the expression in the form \newline5n5^n.\newline5558=\frac{5^{-5}}{5^8}=

Full solution

Q. Simplify.\newlineRewrite the expression in the form \newline5n5^n.\newline5558=\frac{5^{-5}}{5^8}=
  1. Apply Rule for Dividing Powers: We have the expression (55)/(58)(5^{-5})/(5^{8}).\newlineWhen dividing powers with the same base, we subtract the exponents.\newlineCalculation: (5)(8)=13(-5) - (8) = -13
  2. Calculate Exponents: Rewrite the expression using the rule for dividing powers with the same base.\newline(55)/(58)=558=513(5^{-5})/(5^{8}) = 5^{-5 - 8} = 5^{-13}

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago