Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

((z^(4))/(6^(2)))^(-3)=?
Choose 1 answer:
(A) 
(z)/(6^(-1))
(B) 
z^(12)*6^(6)
(C) 
(6^(6))/(z^(12))

Select the equivalent expression.\newline(z462)3=\left(\frac{z^{4}}{6^{2}}\right)^{-3}=?\newlineChoose 11 answer:\newline(A) z61\frac{z}{6^{-1}}\newline(B) z1266z^{12}\cdot 6^{6}\newline(C) 66z12\frac{6^{6}}{z^{12}}

Full solution

Q. Select the equivalent expression.\newline(z462)3=\left(\frac{z^{4}}{6^{2}}\right)^{-3}=?\newlineChoose 11 answer:\newline(A) z61\frac{z}{6^{-1}}\newline(B) z1266z^{12}\cdot 6^{6}\newline(C) 66z12\frac{6^{6}}{z^{12}}
  1. Understand Exponent Properties: Understand the properties of exponents. When an expression with a power is raised to another power, we multiply the exponents. Also, a negative exponent means we take the reciprocal of the base and make the exponent positive.
  2. Apply Exponent Rule: Apply the exponent rule to the given expression.\newline(z462)3\left(\frac{z^{4}}{6^{2}}\right)^{-3} means we multiply the exponents of zz and 66 by 3-3.\newlinez43623\frac{z^{4 \cdot -3}}{6^{2 \cdot -3}}
  3. Calculate New Exponents: Calculate the new exponents.\newlinez4×3z^{4 \times -3} becomes z12z^{-12} and 62×36^{2 \times -3} becomes 666^{-6}.\newlinez1266\frac{z^{-12}}{6^{-6}}
  4. Rewrite with Positive Exponents: Rewrite the expression with positive exponents.\newlineTo make the exponents positive, we take the reciprocal of each base.\newline66z12\frac{6^{6}}{z^{12}}
  5. Match with Options: Match the simplified expression with the given options.\newlineThe expression we have found, (66)/(z12)(6^{6})/(z^{12}), matches option (C).

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago