Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

((x^(4))/(7^(-8)))^(-7)=?
Choose 1 answer:
(A) 
x^(-28)*7^(-56)
(B) 
(x^(28))/(7^(56))
(c) 
(x^(28))/(7^(-56))

Select the equivalent expression.\newline((x4)/(78))7=((x^{4})/(7^{-8}))^{-7}=?\newlineChoose 11 answer:\newline(A) \newlinex28756x^{-28}\cdot7^{56}\newline(B) \newline(x28)/(756)(x^{28})/(7^{56})\newline(C) \newline(x28)/(756)(x^{28})/(7^{-56})

Full solution

Q. Select the equivalent expression.\newline((x4)/(78))7=((x^{4})/(7^{-8}))^{-7}=?\newlineChoose 11 answer:\newline(A) \newlinex28756x^{-28}\cdot7^{56}\newline(B) \newline(x28)/(756)(x^{28})/(7^{56})\newline(C) \newline(x28)/(756)(x^{28})/(7^{-56})
  1. Apply Quotient Rule: Apply the power of a quotient rule.\newlineThe power of a quotient rule states that (ab)n=anbn(\frac{a}{b})^n = \frac{a^n}{b^n}. We will apply this rule to the given expression (x478)7\left(\frac{x^{4}}{7^{-8}}\right)^{-7}.\newline(x478)7=(x4)7(78)7\left(\frac{x^{4}}{7^{-8}}\right)^{-7} = \frac{(x^{4})^{-7}}{(7^{-8})^{-7}}
  2. Simplify Exponents: Simplify the exponents.\newlineWhen raising a power to a power, you multiply the exponents. So, (x4)7(x^{4})^{-7} becomes x47x^{4 \cdot -7} and (78)7(7^{-8})^{-7} becomes 7877^{-8 \cdot -7}.\newline(x4)7(78)7=x28756\frac{(x^{4})^{-7}}{(7^{-8})^{-7}} = \frac{x^{-28}}{7^{56}}
  3. Write Final Expression: Write the final expression.\newlineThe simplified expression is x28/756x^{-28} / 7^{56}, which corresponds to one of the answer choices.

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 10 months ago