Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(x^(-3)*y^(3))^(-7)=?
Choose 1 answer:
(A) 
x^(21)*y^(-21)
(B) 
(xy)^(0)
(C) 
x^(-10)*y^(-4)

Select the equivalent expression.\newline(x3y3)7=(x^{-3}y^{3})^{-7}=?\newlineChoose 11 answer:\newline(A) \newlinex21y21x^{21}y^{-21}\newline(B) \newline(xy)0(xy)^{0}\newline(C) \newlinex10y4x^{-10}y^{-4}

Full solution

Q. Select the equivalent expression.\newline(x3y3)7=(x^{-3}y^{3})^{-7}=?\newlineChoose 11 answer:\newline(A) \newlinex21y21x^{21}y^{-21}\newline(B) \newline(xy)0(xy)^{0}\newline(C) \newlinex10y4x^{-10}y^{-4}
  1. Apply product rule: Apply the power of a product rule, which states that (ab)n=an×bn(ab)^n = a^n \times b^n, to the expression (x3y3)7(x^{-3}y^{3})^{-7}.\newline(x3y3)7=x3×7×y3×7(x^{-3}y^{3})^{-7} = x^{-3 \times -7} \times y^{3 \times -7}
  2. Multiply exponents: Multiply the exponents inside the parentheses by the exponent outside the parentheses.\newlinex(37)y(37)=x21y21x^{(-3 \cdot -7)} \cdot y^{(3 \cdot -7)} = x^{21} \cdot y^{-21}
  3. Check answer choices: Check the answer choices to see which one matches the simplified expression.\newlineThe expression x21y21x^{21} \cdot y^{-21} matches answer choice (A).

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago