Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(a^(-7)*b^(-2))^(-9)=?
Choose 1 answer:
(A) 
(a^(63))/(b^(18))
(B) 
(b^(18))/(a^(63))
(c) 
a^(63)*b^(18)

Select the equivalent expression.\newline(a7b2)9=(a^{-7}b^{-2})^{-9}=?\newlineChoose 11 answer:\newline(A) a63b18\frac{a^{63}}{b^{18}}\newline(B) b18a63\frac{b^{18}}{a^{63}}\newline(C) a63b18a^{63}b^{18}

Full solution

Q. Select the equivalent expression.\newline(a7b2)9=(a^{-7}b^{-2})^{-9}=?\newlineChoose 11 answer:\newline(A) a63b18\frac{a^{63}}{b^{18}}\newline(B) b18a63\frac{b^{18}}{a^{63}}\newline(C) a63b18a^{63}b^{18}
  1. Identify base and exponents: Identify the base and the exponents inside the parentheses. In (a(7)b(2))(a^{(-7)} \cdot b^{(-2)}), aa and bb are the bases raised to the exponents 7-7 and 2-2, respectively.\newlineBase aa: Exponent 7-7\newlineBase bb: Exponent 2-2
  2. Apply power of a power rule: Apply the power of a power rule, which states that (xm)n=x(mn)(x^m)^n = x^{(m*n)}. We will apply this rule to both a(7)a^{(-7)} and b(2)b^{(-2)} with the outer exponent of 9-9.\newline(a(7))(9)=a((7)(9))(a^{(-7)})^{(-9)} = a^{((-7)*(-9))}\newline(b(2))(9)=b((2)(9))(b^{(-2)})^{(-9)} = b^{((-2)*(-9))}
  3. Perform exponent multiplication: Perform the multiplication of the exponents.\newlinea((7)(9))=a63a^{((-7)*(-9))} = a^{63}\newlineb((2)(9))=b18b^{((-2)*(-9))} = b^{18}
  4. Combine results: Combine the results to form the final expression.\newline(a7b2)9=a63b18(a^{-7} \cdot b^{-2})^{-9} = a^{63} \cdot b^{18}
  5. Choose equivalent expression: Choose the equivalent expression from the given choices.\newlineThe correct equivalent expression is a63b18a^{63} \cdot b^{18}, which matches choice (C)(C).

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago