Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(a^(-2)*8^(7))^(2)=?
Choose 1 answer:
(A) 
(8a)^(10)
(B) 
a^(-4)*8^(14)
(c) 
8^(9)

Select the equivalent expression.\newline(a287)2=(a^{-2}\cdot 8^{7})^{2}=?\newlineChoose 11 answer:\newline(A) (8a)10(8a)^{10}\newline(B) a4814a^{-4}\cdot 8^{14}\newline(C) 898^{9}

Full solution

Q. Select the equivalent expression.\newline(a287)2=(a^{-2}\cdot 8^{7})^{2}=?\newlineChoose 11 answer:\newline(A) (8a)10(8a)^{10}\newline(B) a4814a^{-4}\cdot 8^{14}\newline(C) 898^{9}
  1. Apply product rule: Apply the power of a product rule, which states that (xy)n=xnyn (xy)^n = x^n * y^n , to the given expression (a287)2 (a^{-2} \cdot 8^{7})^{2}
  2. Raise factors to power of 22: Raise each factor inside the parentheses to the power of 22: (a2)2(a^{-2})^2 and (87)2(8^{7})^2.
  3. Calculate new exponents: Calculate the new exponents by multiplying the exponents: (2)×2=4(-2) \times 2 = -4 and 7×2=147 \times 2 = 14.
  4. Write expression with new exponents: Write down the expression with the new exponents: a4814a^{-4} \cdot 8^{14}.
  5. Compare with choices: Compare the result with the given choices to select the correct answer.

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago