Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(5^(4)*b^(-10))^(-6)=?
Choose 1 answer:
(A) 
(b^(60))/(5^(24))
(B) 
5^(4)*b^(60)
(c) 
5^(24)*b^(60)

Select the equivalent expression.\newline(54b10)6=(5^{4}\cdot b^{-10})^{-6}=?\newlineChoose 11 answer:\newline(A) b60524\frac{b^{60}}{5^{24}}\newline(B) 54b605^{4}\cdot b^{60}\newline(C) 524b605^{24}\cdot b^{60}

Full solution

Q. Select the equivalent expression.\newline(54b10)6=(5^{4}\cdot b^{-10})^{-6}=?\newlineChoose 11 answer:\newline(A) b60524\frac{b^{60}}{5^{24}}\newline(B) 54b605^{4}\cdot b^{60}\newline(C) 524b605^{24}\cdot b^{60}
  1. Apply Power Rule: Apply the power of a power rule.\newlineThe power of a power rule states that (xm)n=x(mn)(x^m)^n = x^{(m*n)}. We will apply this rule to both 545^4 and b(10)b^{(-10)} with the exponent of 6-6.\newline(5(4)b(10))(6)=5(4(6))b(10(6))(5^{(4)}*b^{(-10)})^{(-6)} = 5^{(4*(-6))} * b^{(-10*(-6))}
  2. Multiply Exponents: Perform the multiplication of the exponents.\newlineNow we multiply the exponents for both 55 and bb.\newline54(6)=5245^{4*(-6)} = 5^{-24}\newlineb(10)(6)=b60b^{(-10)*(-6)} = b^{60}
  3. Combine Results: Combine the results.\newlineWe combine the results from Step 22 to get the simplified expression.\newline524×b605^{-24} \times b^{60}
  4. Rewrite with Positive Exponents: Rewrite the expression with positive exponents.\newlineSince 5245^{-24} is in the numerator, we can rewrite it with a positive exponent by placing it in the denominator.\newline(524b60)=b60524(5^{-24} \cdot b^{60}) = \frac{b^{60}}{5^{24}}
  5. Match Given Options: Match the result with the given options.\newlineThe expression we have obtained is b60524\frac{b^{60}}{5^{24}}, which matches option (A).

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago