Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

((4^(3))/(5^(-2)))^(5)=?
Choose 1 answer:
(A) 
(4^(8))/(5^(3))
(B) 
(4^(15))/(5^(10))
(c) 
4^(15)*5^(10)

Select the equivalent expression.\newline(4352)5=?\left(\frac{4^{3}}{5^{-2}}\right)^{5}=\,?\newlineChoose 11 answer:\newline(A) 4853\frac{4^{8}}{5^{3}}\newline(B) 415510\frac{4^{15}}{5^{10}}\newline(C) 4155104^{15}\cdot 5^{10}

Full solution

Q. Select the equivalent expression.\newline(4352)5=?\left(\frac{4^{3}}{5^{-2}}\right)^{5}=\,?\newlineChoose 11 answer:\newline(A) 4853\frac{4^{8}}{5^{3}}\newline(B) 415510\frac{4^{15}}{5^{10}}\newline(C) 4155104^{15}\cdot 5^{10}
  1. Apply Power Rule: Apply the power of a power rule.\newlineThe power of a power rule states that (am)n=amn(a^{m})^{n} = a^{m*n}. We will apply this rule to both the numerator and the denominator separately.\newline(4352)5=435525\left(\frac{4^{3}}{5^{-2}}\right)^{5} = \frac{4^{3*5}}{5^{-2*5}}
  2. Multiply Exponents: Perform the multiplication for the exponents.\newlineNow we multiply the exponents by 55.\newline4(3×5)=4154^{(3\times5)} = 4^{15}\newline5(2×5)=5105^{(-2\times5)} = 5^{-10}
  3. Rewrite Expression: Rewrite the expression with the new exponents.\newlineWe now have the expression (415)/(510)(4^{15})/(5^{-10}).
  4. Simplify Exponents: Simplify the expression by converting the negative exponent to a positive exponent.\newlineA negative exponent means that the base is on the wrong side of the fraction line, so we flip it to the other side to make the exponent positive.\newline415510=415×510\frac{4^{15}}{5^{-10}} = 4^{15} \times 5^{10}
  5. Choose Correct Answer: Choose the correct answer.\newlineThe expression 415×5104^{15} \times 5^{10} matches answer choice (C).

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago