Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

((3^(-6))/(7^(-3)))^(5)=?
Choose 1 answer:
(A) 
(7^(3))/(3^(-30))
(B) 
(7^(15))/(3^(30))
(c) 
(3^(15))/(7^(30))

Select the equivalent expression.\newline(3673)5=?\left(\frac{3^{-6}}{7^{-3}}\right)^{5}=?\newlineChoose 11 answer:\newline(A) 73330\frac{7^{3}}{3^{-30}}\newline(B) 715330\frac{7^{15}}{3^{30}}\newline(C) 315730\frac{3^{15}}{7^{30}}

Full solution

Q. Select the equivalent expression.\newline(3673)5=?\left(\frac{3^{-6}}{7^{-3}}\right)^{5}=?\newlineChoose 11 answer:\newline(A) 73330\frac{7^{3}}{3^{-30}}\newline(B) 715330\frac{7^{15}}{3^{30}}\newline(C) 315730\frac{3^{15}}{7^{30}}
  1. Simplify expression using exponent property: Simplify the expression inside the parentheses by using the property of exponents that states an=1ana^{-n} = \frac{1}{a^n}.\newline(3673)\left(\frac{3^{-6}}{7^{-3}}\right) can be rewritten as (136)/(173)\left(\frac{1}{3^6}\right)/\left(\frac{1}{7^3}\right).
  2. Multiply by reciprocal of divisor: When dividing fractions, you multiply by the reciprocal of the divisor. So, (1/(36))/(1/(73))(1/(3^6))/(1/(7^3)) becomes (1/(36))×(73)(1/(3^6)) \times (7^3).
  3. Simplify resulting expression: Simplify the expression obtained in Step 22. This results in (73)/(36)(7^3)/(3^6).
  4. Raise fraction to power of 55: Now raise the simplified fraction to the power of 55, which is the same as raising both the numerator and the denominator to the power of 55. So, (7336)5\left(\frac{7^3}{3^6}\right)^5 becomes 735365\frac{7^{3 \cdot 5}}{3^{6 \cdot 5}}.
  5. Calculate exponents: Calculate the exponents. 3×53 \times 5 equals 1515, and 6×56 \times 5 equals 3030. So, the expression becomes (715)/(330)(7^{15})/(3^{30}).
  6. Match result with choices: Match the result with the given choices. The expression (715)/(330)(7^{15})/(3^{30}) corresponds to choice (B).

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago