Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(2^(-7)*5^(5))^(2)=?
Choose 1 answer:
(A) 
2^(-14)*5^(10)
(B) 
2^(-5)*5^(7)
(C) 
2^(-7)*5^(10)

Select the equivalent expression.\newline(2755)2=(2^{-7}\cdot5^{5})^{2}=?\newlineChoose 11 answer:\newline(A) 2145102^{-14}\cdot5^{10}\newline(B) 25572^{-5}\cdot5^{7}\newline(C) 275102^{-7}\cdot5^{10}

Full solution

Q. Select the equivalent expression.\newline(2755)2=(2^{-7}\cdot5^{5})^{2}=?\newlineChoose 11 answer:\newline(A) 2145102^{-14}\cdot5^{10}\newline(B) 25572^{-5}\cdot5^{7}\newline(C) 275102^{-7}\cdot5^{10}
  1. Identify properties of exponents: Identify the properties of exponents to be used. When raising a power to a power, you multiply the exponents (am)n=am×n(a^{m})^{n} = a^{m \times n}.
  2. Apply power of a product rule: Apply the power of a product rule: (ab)n=anbn(a*b)^n = a^n * b^n. Here, a=27a = 2^{-7}, b=55b = 5^{5}, and n=2n = 2.
  3. Calculate new exponents: Calculate the new exponents by multiplying: (27)2=214(2^{-7})^2 = 2^{-14} and (55)2=510(5^{5})^2 = 5^{10}.
  4. Combine results: Combine the results to get the final expression: 214×5102^{-14} \times 5^{10}.
  5. Choose equivalent expression: Choose the equivalent expression from the given options. The correct answer is (A) 2145102^{-14}\cdot 5^{10}.

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago