Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(2^(-4)*z^(-3))^(5)=?
Choose 1 answer:
(A) 
2z^(2)
(B) 
2^(20)*z^(15)
(c) 
(1)/(2^(20)*z^(15))

Select the equivalent expression.\newline(24z3)5=(2^{-4} \cdot z^{-3})^{5}=?\newlineChoose 11 answer:\newline(A) 2z22z^{2}\newline(B) 220z152^{20} \cdot z^{15}\newline(C) 1220z15\frac{1}{2^{20} \cdot z^{15}}

Full solution

Q. Select the equivalent expression.\newline(24z3)5=(2^{-4} \cdot z^{-3})^{5}=?\newlineChoose 11 answer:\newline(A) 2z22z^{2}\newline(B) 220z152^{20} \cdot z^{15}\newline(C) 1220z15\frac{1}{2^{20} \cdot z^{15}}
  1. Apply power rule: Apply the power of a power rule.\newlineThe power of a power rule states that (am)n=a(mn)(a^m)^n = a^{(m*n)}. We will apply this rule to both 242^{-4} and z3z^{-3}.\newline(24z3)5=2(45)z(35)(2^{-4}*z^{-3})^5 = 2^{(-4*5)} * z^{(-3*5)}
  2. Perform exponent multiplication: Perform the multiplication for the exponents.\newlineNow we multiply the exponents by 55.\newline2(45)z(35)=220z152^{(-4*5)} * z^{(-3*5)} = 2^{-20} * z^{-15}
  3. Write with positive exponents: Write the expression using positive exponents.\newlineSince we have negative exponents, we can write them as fractions with positive exponents in the denominator.\newline220×z15=1220×1z152^{-20} \times z^{-15} = \frac{1}{2^{20}} \times \frac{1}{z^{15}}
  4. Combine fractions: Combine the fractions.\newlineSince both terms are being multiplied, we can combine them into a single fraction.\newline(1220)×(1z15)=1220×z15(\frac{1}{2^{20}}) \times (\frac{1}{z^{15}}) = \frac{1}{2^{20} \times z^{15}}
  5. Match with options: Match the result with the given options.\newlineThe expression we have found is 1220z15\frac{1}{2^{20} \cdot z^{15}}, which matches option (C).

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago