Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the function by completing the square.

{:[h(x)=x^(2)+3x-18],[h(x)=◻(x+◻)^(2)+◻]:}

Rewrite the function by completing the square.\newlineh(x)=x2+3x18h(x)=(x+)2+ \begin{array}{l} h(x)=x^{2}+3 x-18 \\ h(x)=\square(x+\square)^{2}+\square \end{array}

Full solution

Q. Rewrite the function by completing the square.\newlineh(x)=x2+3x18h(x)=(x+)2+ \begin{array}{l} h(x)=x^{2}+3 x-18 \\ h(x)=\square(x+\square)^{2}+\square \end{array}
  1. Identify coefficients: Identify the quadratic and linear coefficients from the function h(x)h(x).\newlineIn h(x)=x2+3x18h(x) = x^2 + 3x - 18, the quadratic coefficient is 11 (the coefficient of x2x^2) and the linear coefficient is 33 (the coefficient of xx).
  2. Complete the square: Divide the linear coefficient by 22 and square the result to find the number to complete the square.\newline(32)2=94(\frac{3}{2})^2 = \frac{9}{4}\newlineThis is the value that will be added and subtracted inside the square to complete it.
  3. Rewrite the function: Rewrite the function by adding and subtracting (32)2(\frac{3}{2})^2 inside the expression.\newlineh(x)=x2+3x+(32)2(32)218h(x) = x^2 + 3x + (\frac{3}{2})^2 - (\frac{3}{2})^2 - 18\newlineh(x)=x2+3x+949418h(x) = x^2 + 3x + \frac{9}{4} - \frac{9}{4} - 18
  4. Combine constant terms: Combine the constant terms outside the square.\newline9418-\frac{9}{4} - 18 can be combined by converting 1818 to a fraction with a denominator of 44: 18=72418 = \frac{72}{4}\newlineh(x)=x2+3x+9472494h(x) = x^2 + 3x + \frac{9}{4} - \frac{72}{4} - \frac{9}{4}\newlineh(x)=x2+3x+94814h(x) = x^2 + 3x + \frac{9}{4} - \frac{81}{4}
  5. Factor and simplify: Factor the perfect square trinomial and simplify the constant term.\newlineh(x)=(x+32)2814h(x) = (x + \frac{3}{2})^2 - \frac{81}{4}\newlineThis is the function h(x)h(x) rewritten by completing the square.