Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the function by completing the square.

{:[h(x)=4x^(2)+4x+1],[h(x)=◻(x+◻)^(2)+◻]:}

Rewrite the function by completing the square.\newlineh(x)=4x2+4x+1h(x)=(x+)2+ \begin{array}{l} h(x)=4 x^{2}+4 x+1 \\ h(x)=\square(x+\square)^{2}+\square \end{array}

Full solution

Q. Rewrite the function by completing the square.\newlineh(x)=4x2+4x+1h(x)=(x+)2+ \begin{array}{l} h(x)=4 x^{2}+4 x+1 \\ h(x)=\square(x+\square)^{2}+\square \end{array}
  1. Identify coefficients: Identify the quadratic coefficient, linear coefficient, and constant term in the given quadratic function.\newlineh(x)=4x2+4x+1h(x) = 4x^2 + 4x + 1\newlineQuadratic coefficient (a) = 44\newlineLinear coefficient (b) = 44\newlineConstant term (c) = 11
  2. Factor out quadratic coefficient: Factor out the quadratic coefficient from the x2x^2 and xx terms.\newlineh(x)=4(x2+x)+1h(x) = 4(x^2 + x) + 1
  3. Find value to complete the square: Divide the linear coefficient (from the factored form) by 22 and square the result to find the value to complete the square.\newlineLinear coefficient in factored form = 11 (after factoring out 44)\newline(12)2=14(\frac{1}{2})^2 = \frac{1}{4}
  4. Complete the square: Add and subtract the value found in the previous step inside the parentheses to complete the square.\newlineh(x)=4(x2+x+1414)+1h(x) = 4(x^2 + x + \frac{1}{4} - \frac{1}{4}) + 1
  5. Combine completed square terms: Combine the terms inside the parentheses that complete the square and the term that was subtracted.\newlineh(x) = 44((x + \frac{11}{22})^22 - \frac{11}{44}) + 11
  6. Distribute quadratic coefficient: Distribute the quadratic coefficient 44 to the terms inside the parentheses.h(x)=4(x+12)24(14)+1h(x) = 4(x + \frac{1}{2})^2 - 4(\frac{1}{4}) + 1
  7. Simplify constant terms: Simplify the constant terms.\newline4(14)+1=1+1=0-4(\frac{1}{4}) + 1 = -1 + 1 = 0\newlineh(x)=4(x+12)2+0h(x) = 4(x + \frac{1}{2})^2 + 0
  8. Write in completed square form: Since adding 00 does not change the value, we can write the function in its completed square form.\newlineh(x)=4(x+12)2h(x) = 4(x + \frac{1}{2})^2