Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the function by completing the square.

{:[h(x)=2x^(2)+11 x+15],[h(x)=◻(x+◻)^(2)+◻]:}

Rewrite the function by completing the square.\newlineh(x)=2x2+11x+15h(x)=(x+)2+ \begin{array}{l} h(x)=2 x^{2}+11 x+15 \\ h(x)=\square(x+\square)^{2}+\square \end{array}

Full solution

Q. Rewrite the function by completing the square.\newlineh(x)=2x2+11x+15h(x)=(x+)2+ \begin{array}{l} h(x)=2 x^{2}+11 x+15 \\ h(x)=\square(x+\square)^{2}+\square \end{array}
  1. Identify coefficient of x2x^2: Identify the coefficient of x2x^2, which is 22, and factor it out from the xx terms.\newlineh(x)=2(x2+(11/2)x)+15h(x) = 2(x^2 + (11/2)x) + 15
  2. Complete the square: To complete the square, we need to add and subtract the square of half the coefficient of xx inside the parentheses. The coefficient of xx is 112\frac{11}{2}, so half of that is 114\frac{11}{4}. Squaring 114\frac{11}{4} gives us (114)2=12116\left(\frac{11}{4}\right)^2 = \frac{121}{16}.\newlineh(x)=2(x2+(112)x+1211612116)+15h(x) = 2\left(x^2 + \left(\frac{11}{2}\right)x + \frac{121}{16} - \frac{121}{16}\right) + 15
  3. Add and subtract: Add and subtract 12116\frac{121}{16} inside the parentheses, but remember to multiply the subtracted term by 22 because we factored 22 out in the first step.\newlineh(x)=2(x2+112x+12116)2(12116)+15h(x) = 2(x^2 + \frac{11}{2}x + \frac{121}{16}) - 2(\frac{121}{16}) + 15
  4. Simplify the equation: Simplify the equation by combining like terms outside the parentheses.\newlineh(x)=2(x+114)22(12116)+15h(x) = 2(x + \frac{11}{4})^2 - 2(\frac{121}{16}) + 15\newlineh(x)=2(x+114)21218+15h(x) = 2(x + \frac{11}{4})^2 - \frac{121}{8} + 15
  5. Convert 1515 to fraction: Convert 1515 to a fraction with a denominator of 88 to combine with 1218-\frac{121}{8}. \newline15=120815 = \frac{120}{8}\newlineh(x)=2(x+114)21218+1208h(x) = 2(x + \frac{11}{4})^2 - \frac{121}{8} + \frac{120}{8}
  6. Combine the fractions: Combine the fractions.\newlineh(x)=2(x+114)218h(x) = 2(x + \frac{11}{4})^2 - \frac{1}{8}
  7. Write final completed square form: Write the final completed square form of the function. h(x)=2(x+114)218h(x) = 2(x + \frac{11}{4})^2 - \frac{1}{8}